Spaces:
Running
Running
from transformers import PretrainedConfig | |
class PhiConfig(PretrainedConfig): | |
model_type = "phi" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=51200, | |
hidden_size=2048, | |
intermediate_size=8192, | |
num_hidden_layers=24, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
resid_pdrop=0.0, | |
embd_pdrop=0.0, | |
attention_dropout=0.0, | |
hidden_act="gelu_new", | |
max_position_embeddings=2048, | |
initializer_range=0.02, | |
layer_norm_eps=1e-5, | |
use_cache=True, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
partial_rotary_factor=0.5, | |
bos_token_id=1, | |
eos_token_id=2, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.resid_pdrop = resid_pdrop | |
self.embd_pdrop = embd_pdrop | |
self.attention_dropout = attention_dropout | |
self.hidden_act = hidden_act | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self.partial_rotary_factor = partial_rotary_factor | |
self._rope_scaling_validation() | |
super().__init__( | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation | |
def _rope_scaling_validation(self): | |
""" | |
Validate the `rope_scaling` configuration. | |
""" | |
if self.rope_scaling is None: | |
return | |
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | |
raise ValueError( | |
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " | |
f"got {self.rope_scaling}" | |
) | |
rope_scaling_type = self.rope_scaling.get("type", None) | |
rope_scaling_factor = self.rope_scaling.get("factor", None) | |
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | |
raise ValueError( | |
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | |
) | |
if ( | |
rope_scaling_factor is None | |
or not isinstance(rope_scaling_factor, float) | |
or rope_scaling_factor <= 1.0 | |
): | |
raise ValueError( | |
f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}" | |
) | |
class MoondreamConfig(PretrainedConfig): | |
model_type = "moondream1" | |
def __init__(self, **kwargs): | |
self.text_config = PhiConfig(**kwargs.pop("text_config", {})) | |
super().__init__(**kwargs) | |