import os os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') import gradio as gr # check pytorch installation: import torch, torchvision print(torch.__version__, torch.cuda.is_available()) assert torch.__version__.startswith("1.9") # please manually install torch 1.9 if Colab changes its default version # Some basic setup: # Setup detectron2 logger import detectron2 from detectron2.utils.logger import setup_logger setup_logger() # import some common libraries import numpy as np import os, json, cv2, random from google.colab.patches import cv2_imshow # import some common detectron2 utilities from detectron2 import model_zoo from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.utils.visualizer import Visualizer from detectron2.data import MetadataCatalog, DatasetCatalog cfg = get_cfg() cfg.MODEL.DEVICE='cpu' # add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml")) cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model # Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as well cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") predictor = DefaultPredictor(cfg) def inference(img): im = cv2.imread(img.name) outputs = predictor(im) v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) out = v.draw_instance_predictions(outputs["instances"].to("cpu")) return Image.fromarray(np.uint8(out.get_image())).convert('RGB') iface = gr.Interface(inference, inputs="image", outputs="image") iface.launch()