|
import argparse, pickle |
|
import logging |
|
import os, random |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
|
|
from lib.voicecraft.data.tokenizer import ( |
|
AudioTokenizer, |
|
TextTokenizer, |
|
tokenize_audio, |
|
tokenize_text |
|
) |
|
|
|
from lib.voicecraft.models import voicecraft |
|
import argparse, time, tqdm |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
parser.add_argument("--manifest_fn", type=str, default="path/to/eval_metadata_file") |
|
parser.add_argument("--audio_root", type=str, default="path/to/audio_folder") |
|
parser.add_argument("--exp_dir", type=str, default="path/to/model_folder") |
|
parser.add_argument("--left_margin", type=float, default=0.08, help="extra space on the left to the word boundary") |
|
parser.add_argument("--right_margin", type=float, default=0.08, help="extra space on the right to the word boundary") |
|
parser.add_argument("--seed", type=int, default=1) |
|
parser.add_argument("--codec_audio_sr", type=int, default=16000, help='the sample rate of audio that the codec is trained for') |
|
parser.add_argument("--codec_sr", type=int, default=50, help='the sample rate of the codec codes') |
|
parser.add_argument("--top_k", type=int, default=-1, help="sampling param") |
|
parser.add_argument("--top_p", type=float, default=0.8, help="sampling param") |
|
parser.add_argument("--temperature", type=float, default=1.0, help="sampling param") |
|
parser.add_argument("--output_dir", type=str, default=None) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
parser.add_argument("--signature", type=str, default=None, help="path to the encodec model") |
|
parser.add_argument("--stop_repetition", type=int, default=2, help="used for inference, when the number of consecutive repetition of a token is bigger than this, stop it") |
|
parser.add_argument("--kvcache", type=int, default=1, help='if true, use kv cache, which is 4-8x faster than without') |
|
parser.add_argument("--silence_tokens", type=str, default="[1388,1898,131]", help="note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default") |
|
return parser.parse_args() |
|
|
|
@torch.no_grad() |
|
def inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, device, decode_config): |
|
|
|
text_tokens = [phn2num[phn] for phn in |
|
tokenize_text( |
|
text_tokenizer, text=target_text.strip() |
|
) if phn in phn2num |
|
] |
|
text_tokens = torch.LongTensor(text_tokens).unsqueeze(0) |
|
text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]]) |
|
|
|
encoded_frames = tokenize_audio(audio_tokenizer, audio_fn) |
|
original_audio = encoded_frames[0][0].transpose(2,1) |
|
assert original_audio.ndim==3 and original_audio.shape[0] == 1 and original_audio.shape[2] == model_args.n_codebooks, original_audio.shape |
|
logging.info(f"with direct encodec encoding before input, original audio length: {original_audio.shape[1]} codec frames, which is {original_audio.shape[1]/decode_config['codec_sr']:.2f} sec.") |
|
|
|
|
|
stime = time.time() |
|
encoded_frames = model.inference( |
|
text_tokens.to(device), |
|
text_tokens_lens.to(device), |
|
original_audio[...,:model_args.n_codebooks].to(device), |
|
mask_interval=mask_interval.unsqueeze(0).to(device), |
|
top_k=decode_config['top_k'], |
|
top_p=decode_config['top_p'], |
|
temperature=decode_config['temperature'], |
|
stop_repetition=decode_config['stop_repetition'], |
|
kvcache=decode_config['kvcache'], |
|
silence_tokens=eval(decode_config['silence_tokens']) if type(decode_config['silence_tokens']) == str else decode_config['silence_tokens'], |
|
) |
|
logging.info(f"inference on one sample take: {time.time() - stime:.4f} sec.") |
|
if type(encoded_frames) == tuple: |
|
encoded_frames = encoded_frames[0] |
|
logging.info(f"generated encoded_frames.shape: {encoded_frames.shape}, which is {encoded_frames.shape[-1]/decode_config['codec_sr']} sec.") |
|
|
|
|
|
|
|
original_sample = audio_tokenizer.decode( |
|
[(original_audio.transpose(2,1), None)] |
|
) |
|
generated_sample = audio_tokenizer.decode( |
|
[(encoded_frames, None)] |
|
) |
|
|
|
return original_sample, generated_sample |
|
|
|
def get_model(exp_dir, device=None): |
|
with open(os.path.join(exp_dir, "args.pkl"), "rb") as f: |
|
model_args = pickle.load(f) |
|
|
|
logging.info("load model weights...") |
|
model = voicecraft.VoiceCraft(model_args) |
|
ckpt_fn = os.path.join(exp_dir, "best_bundle.pth") |
|
ckpt = torch.load(ckpt_fn, map_location='cpu')['model'] |
|
phn2num = torch.load(ckpt_fn, map_location='cpu')['phn2num'] |
|
model.load_state_dict(ckpt) |
|
del ckpt |
|
logging.info("done loading weights...") |
|
if device == None: |
|
device = torch.device("cpu") |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda:0") |
|
model.to(device) |
|
model.eval() |
|
return model, model_args, phn2num |
|
|
|
|
|
def get_mask_interval(ali_fn, word_span_ind, editType): |
|
with open(ali_fn, "r") as rf: |
|
data = [l.strip().split(",") for l in rf.readlines()] |
|
data = data[1:] |
|
tmp = word_span_ind.split(",") |
|
s, e = int(tmp[0]), int(tmp[-1]) |
|
start = None |
|
for j, item in enumerate(data): |
|
if j == s and item[3] == "words": |
|
if editType == 'insertion': |
|
start = float(item[1]) |
|
else: |
|
start = float(item[0]) |
|
if j == e and item[3] == "words": |
|
if editType == 'insertion': |
|
end = float(item[0]) |
|
else: |
|
end = float(item[1]) |
|
assert start != None |
|
break |
|
return (start, end) |
|
|
|
if __name__ == "__main__": |
|
def seed_everything(seed): |
|
os.environ['PYTHONHASHSEED'] = str(seed) |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cudnn.deterministic = True |
|
formatter = ( |
|
"%(asctime)s [%(levelname)s] %(filename)s:%(lineno)d || %(message)s" |
|
) |
|
logging.basicConfig(format=formatter, level=logging.INFO) |
|
args = get_args() |
|
|
|
args.allowed_repeat_tokens = eval(args.allowed_repeat_tokens) |
|
seed_everything(args.seed) |
|
|
|
|
|
stime = time.time() |
|
logging.info(f"loading model from {args.exp_dir}") |
|
model, model_args, phn2num = get_model(args.exp_dir) |
|
if not os.path.isfile(model_args.exp_dir): |
|
model_args.exp_dir = args.exp_dir |
|
logging.info(f"loading model done, took {time.time() - stime:.4f} sec") |
|
|
|
|
|
text_tokenizer = TextTokenizer(backend="espeak") |
|
audio_tokenizer = AudioTokenizer(signature=args.signature) |
|
|
|
with open(args.manifest_fn, "r") as rf: |
|
manifest = [l.strip().split("\t") for l in rf.readlines()] |
|
manifest = manifest[1:] |
|
|
|
|
|
audio_fns = [] |
|
target_texts = [] |
|
mask_intervals = [] |
|
edit_types = [] |
|
new_spans = [] |
|
orig_spans = [] |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
if args.crop_concat: |
|
mfa_temp = f"{args.output_dir}/mfa_temp" |
|
os.makedirs(mfa_temp, exist_ok=True) |
|
for item in manifest: |
|
audio_fn = os.path.join(args.audio_root, item[0]) |
|
temp = torchaudio.info(audio_fn) |
|
audio_dur = temp.num_frames/temp.sample_rate |
|
audio_fns.append(audio_fn) |
|
target_text = item[2].split("|")[-1] |
|
edit_types.append(item[5].split("|")) |
|
new_spans.append(item[4].split("|")) |
|
orig_spans.append(item[3].split("|")) |
|
target_texts.append(target_text) |
|
|
|
mis = [] |
|
all_ind_intervals = item[3].split("|") |
|
editTypes = item[5].split("|") |
|
smaller_indx = [] |
|
alignment_fn = os.path.join(args.audio_root, "aligned", item[0].replace(".wav", ".csv")) |
|
if not os.path.isfile(alignment_fn): |
|
alignment_fn = alignment_fn.replace("/aligned/", "/aligned_csv/") |
|
assert os.path.isfile(alignment_fn), alignment_fn |
|
for ind_inter,editType in zip(all_ind_intervals, editTypes): |
|
|
|
mi = get_mask_interval(alignment_fn, ind_inter, editType) |
|
mi = (max(mi[0] - args.left_margin, 1/args.codec_sr), min(mi[1] + args.right_margin, audio_dur)) |
|
mis.append(mi) |
|
smaller_indx.append(mi[0]) |
|
ind = np.argsort(smaller_indx) |
|
mis = [mis[id] for id in ind] |
|
mask_intervals.append(mis) |
|
|
|
|
|
|
|
for i, (audio_fn, target_text, mask_interval) in enumerate(tqdm.tqdm(zip(audio_fns, target_texts, mask_intervals))): |
|
orig_mask_interval = mask_interval |
|
mask_interval = [[round(cmi[0]*args.codec_sr), round(cmi[1]*args.codec_sr)] for cmi in mask_interval] |
|
|
|
mask_interval = torch.LongTensor(mask_interval) |
|
orig_audio, new_audio = inference_one_sample(model, model_args, phn2num, text_tokenizer, audio_tokenizer, audio_fn, target_text, mask_interval, args.device, vars(args)) |
|
|
|
|
|
orig_audio, new_audio = orig_audio[0].cpu(), new_audio[0].cpu() |
|
|
|
|
|
save_fn_new = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_new_seed{args.seed}.wav" |
|
|
|
torchaudio.save(save_fn_new, new_audio, args.codec_audio_sr) |
|
|
|
save_fn_orig = f"{args.output_dir}/{os.path.basename(audio_fn)[:-4]}_orig.wav" |
|
if not os.path.isfile(save_fn_orig): |
|
orig_audio, orig_sr = torchaudio.load(audio_fn) |
|
if orig_sr != args.codec_audio_sr: |
|
orig_audio = torchaudio.transforms.Resample(orig_sr, args.codec_audio_sr)(orig_audio) |
|
torchaudio.save(save_fn_orig, orig_audio, args.codec_audio_sr) |
|
|
|
|