Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,075 Bytes
0a7d59a dab5ca1 0bd0fb4 d18eb29 77d29ae d18eb29 1a80c1d 8cc4ce5 252b569 dac412d 8cc4ce5 2f9718f 0bd0fb4 d1e7833 d826c60 7e3cf8a d1e7833 8cc4ce5 d1e7833 0a7d59a 8cc4ce5 dac412d 8cc4ce5 dac412d 8cc4ce5 2f9718f 0a7d59a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import torch
import spaces
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
)
from huggingface_hub import hf_hub_download
def feifeimodload():
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("aifeifei798/taef1", torch_dtype=dtype).to(
device
)
pipe = DiffusionPipeline.from_pretrained(
"aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype, vae=taef1
).to(device)
#pipe = DiffusionPipeline.from_pretrained(
# "shuttleai/shuttle-3.1-aesthetic", torch_dtype=dtype
#).to(device)
pipe.load_lora_weights(
hf_hub_download("aifeifei798/feifei-flux-lora-v1", "feifei.safetensors"),
adapter_name="feifei",
)
#pipe.load_lora_weights(
# hf_hub_download("aifeifei798/flux-nsfw-lora", "Sakimi_chan_-_FLUX.safetensors"),
# adapter_name="Sakimi_chan",
#)
#pipe.load_lora_weights(
# hf_hub_download("adirik/flux-cinestill", "lora.safetensors"),
# adapter_name="fluxcinestill",
#)
#pipe.load_lora_weights(
# hf_hub_download(
# "aifeifei798/feifei-flux-lora-v1", "FLUX-dev-lora-add_details.safetensors"
# ),
# adapter_name="FLUX-dev-lora-add_details",
#)
#pipe.load_lora_weights(
# hf_hub_download(
# "aifeifei798/feifei-flux-lora-v1", "Shadow-Projection.safetensors"
# ),
# adapter_name="Shadow-Projection",
#)
#pipe.set_adapters(
# ["feifei", "FLUX-dev-lora-add_details", "Shadow-Projection"],
# adapter_weights=[0.65, 0.35, 0.35],
#)
#pipe.fuse_lora(
# adapter_name=["feifei", "FLUX-dev-lora-add_details", "Shadow-Projection"],
# lora_scale=1.0,
#)
pipe.set_adapters(
["feifei"],
adapter_weights=[0.9],
)
pipe.fuse_lora(
adapter_name=["feifei"],
lora_scale=1.0,
)
#pipe.vae.enable_tiling()
pipe.unload_lora_weights()
torch.cuda.empty_cache()
return pipe
|