File size: 1,447 Bytes
ec9b331
 
 
 
 
 
 
 
 
6c1c0b0
ec9b331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import spaces
from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
)
from huggingface_hub import hf_hub_download


def feifeimodload():

    dtype = torch.bfloat16
    device = "cuda" if torch.cuda.is_available() else "cpu"
    taef1 = AutoencoderTiny.from_pretrained("aifeifei798/taef1", torch_dtype=dtype).to(
        device
    )

    pipe = DiffusionPipeline.from_pretrained(
        "aifeifei798/shuttle-3-diffusion", torch_dtype=dtype, vae=taef1
    ).to(device)

    pipe.load_lora_weights(
        hf_hub_download("aifeifei798/feifei-flux-lora-v1", "feifei.safetensors"),
        adapter_name="feifei",
    )
    pipe.load_lora_weights(
        hf_hub_download(
            "aifeifei798/feifei-flux-lora-v1", "FLUX-dev-lora-add_details.safetensors"
        ),
        adapter_name="FLUX-dev-lora-add_details",
    )
    pipe.load_lora_weights(
        hf_hub_download(
            "aifeifei798/feifei-flux-lora-v1", "Shadow-Projection.safetensors"
        ),
        adapter_name="Shadow-Projection",
    )

    pipe.set_adapters(
        ["feifei", "FLUX-dev-lora-add_details", "Shadow-Projection"],
        adapter_weights=[0.65, 0.35, 0.35],
    )
    pipe.fuse_lora(
        adapter_name=["feifei", "FLUX-dev-lora-add_details", "Shadow-Projection"],
        lora_scale=1.0,
    )

    pipe.unload_lora_weights()
    torch.cuda.empty_cache()
    return pipe