File size: 1,483 Bytes
c207c47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from PIL import Image
import spaces
import gradio as gr
from transformers import (
    AutoProcessor,
    AutoModelForCausalLM,
)
import torch

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

Florence_models = AutoModelForCausalLM.from_pretrained(
    "microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)

Florence_processors = AutoProcessor.from_pretrained(
    "microsoft/Florence-2-large", trust_remote_code=True
)


@spaces.GPU
def feifeiflorence(

    image,

    progress=gr.Progress(track_tqdm=True),

):
    image = Image.fromarray(image)
    task_prompt = "<MORE_DETAILED_CAPTION>"

    if image.mode != "RGB":
        image = image.convert("RGB")

    inputs = Florence_processors(
        text=task_prompt, images=image, return_tensors="pt"
    ).to(device, torch_dtype)

    generated_ids = Florence_models.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3,
        do_sample=False,
    )
    generated_text = Florence_processors.batch_decode(
        generated_ids, skip_special_tokens=False
    )[0]
    parsed_answer = Florence_processors.post_process_generation(
        generated_text, task=task_prompt, image_size=(image.width, image.height)
    )
    return parsed_answer["<MORE_DETAILED_CAPTION>"]