Spaces:
Sleeping
Sleeping
import openai | |
import os | |
import streamlit as st | |
from streamlit import session_state | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
from langchain.document_loaders import PyPDFLoader | |
st.title("Chat with data") | |
uploaded_file = st.file_uploader("Choose a file") | |
def extract(uploaded_file): | |
res = [] | |
loader = PyPDFLoader(uploaded_file) | |
pages = loader.load() | |
for i in pages: | |
res.append(i.page_content.replace('\n','')) | |
a = " ".join(res) | |
return a | |
def lang(uploaded_file,ques): | |
context = extract(uploaded_file) | |
docs = Document(page_content=context) | |
index2 = VectorstoreIndexCreator().from_documents([docs]) | |
answer = index2.query(llm = model, question = ques) | |
index2.vectorstore.delete_collection() | |
return answer | |
def qna(uploaded_file,ques): | |
session_state['answer']= lang(uploaded_file,ques) | |
ques= st.text_area(label= "Please enter the Question that you wanna ask.", | |
placeholder="Question") | |
st.text_area("result", value=session_state['answer']) | |
st.button("Get answer dictionary", on_click=qna, args=[uploaded_file,ques]) |