|
import os |
|
import gradio as gr |
|
import librosa |
|
import numpy as np |
|
from pathlib import Path |
|
import inference.infer_tool as infer_tool |
|
import utils |
|
from inference.infer_tool import Svc |
|
import logging |
|
import webbrowser |
|
import argparse |
|
import soundfile |
|
import gradio.processing_utils as gr_processing_utils |
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
logging.getLogger('markdown_it').setLevel(logging.WARNING) |
|
logging.getLogger('urllib3').setLevel(logging.WARNING) |
|
logging.getLogger('matplotlib').setLevel(logging.WARNING) |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
|
|
audio_postprocess_ori = gr.Audio.postprocess |
|
|
|
def audio_postprocess(self, y): |
|
data = audio_postprocess_ori(self, y) |
|
if data is None: |
|
return None |
|
return gr_processing_utils.encode_url_or_file_to_base64(data["name"]) |
|
|
|
|
|
gr.Audio.postprocess = audio_postprocess |
|
def create_vc_fn(model, sid): |
|
def vc_fn(input_audio, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds): |
|
if input_audio is None: |
|
return "You need to select an audio", None |
|
raw_audio_path = f"raw/{input_audio}" |
|
if "." not in raw_audio_path: |
|
raw_audio_path += ".wav" |
|
infer_tool.format_wav(raw_audio_path) |
|
wav_path = Path(raw_audio_path).with_suffix('.wav') |
|
_audio = model.slice_inference( |
|
wav_path, sid, vc_transform, slice_db, |
|
cluster_infer_ratio=0, |
|
auto_predict_f0=auto_f0, |
|
noice_scale=noise_scale, |
|
pad_seconds=pad_seconds) |
|
model.clear_empty() |
|
return "Success", (44100, _audio) |
|
return vc_fn |
|
|
|
def refresh_raw_wav(): |
|
return gr.Dropdown.update(choices=os.listdir("raw")) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--device', type=str, default='cpu') |
|
parser.add_argument('--api', action="store_true", default=False) |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
parser.add_argument("--colab", action="store_true", default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
hubert_model = utils.get_hubert_model().to(args.device) |
|
models = [] |
|
raw = os.listdir("raw") |
|
for f in os.listdir("models"): |
|
name = f |
|
model = Svc(fr"models/{f}/{f}.pth", f"models/{f}/config.json", device=args.device, hubert_model=hubert_model) |
|
cover = f"models/{f}/cover.png" if os.path.exists(f"models/{f}/cover.png") else None |
|
models.append((name, cover, create_vc_fn(model, name))) |
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
"# <center> Sovits Models\n" |
|
"## <center> The input audio should be clean and pure voice without background music.\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=sayashi.Sovits-Umamusume)\n\n" |
|
"[Open In Colab](https://colab.research.google.com/drive/1wfsBbMzmtLflOJeqc5ZnJiLY7L239hJW?usp=share_link)" |
|
" without queue and length limitation.\n\n" |
|
"[Original Repo](https://github.com/svc-develop-team/so-vits-svc)\n\n" |
|
"Other models:\n" |
|
"[rudolf](https://huggingface.co/spaces/sayashi/sovits-rudolf)\n" |
|
"[teio](https://huggingface.co/spaces/sayashi/sovits-teio)\n" |
|
"[goldship](https://huggingface.co/spaces/sayashi/sovits-goldship)\n" |
|
"[tannhauser](https://huggingface.co/spaces/sayashi/sovits-tannhauser)\n" |
|
|
|
) |
|
with gr.Tabs(): |
|
for (name, cover, vc_fn) in models: |
|
with gr.TabItem(name): |
|
with gr.Row(): |
|
gr.Markdown( |
|
'<div align="center">' |
|
f'<img style="width:auto;height:300px;" src="file/{cover}">' if cover else "" |
|
'</div>' |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
vc_input = gr.Dropdown(label="Input audio", choices=raw) |
|
vc_refresh = gr.Button("🔁", variant="primary") |
|
vc_transform = gr.Number(label="vc_transform", value=0) |
|
slice_db = gr.Number(label="slice_db", value=-40) |
|
noise_scale = gr.Number(label="noise_scale", value=0.4) |
|
pad_seconds = gr.Number(label="pad_seconds", value=0.5) |
|
auto_f0 = gr.Checkbox(label="auto_f0", value=False) |
|
vc_submit = gr.Button("Generate", variant="primary") |
|
with gr.Column(): |
|
vc_output1 = gr.Textbox(label="Output Message") |
|
vc_output2 = gr.Audio(label="Output Audio") |
|
vc_submit.click(vc_fn, [vc_input, vc_transform, auto_f0, slice_db, noise_scale, pad_seconds], [vc_output1, vc_output2]) |
|
vc_refresh.click(refresh_raw_wav, [], [vc_input]) |
|
if args.colab: |
|
webbrowser.open("http://127.0.0.1:7860") |
|
app.queue(concurrency_count=1, api_open=args.api).launch(share=args.share) |