Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,342 Bytes
ae18532 0177258 ae18532 0177258 ae18532 0177258 ae18532 3338233 ae18532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gc
from threading import Lock
from warnings import filterwarnings
import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL
from .config import Config
from .upscaler import RealESRGAN
__import__("diffusers").logging.set_verbosity_error()
filterwarnings("ignore", category=FutureWarning, module="torch")
filterwarnings("ignore", category=FutureWarning, module="diffusers")
class Loader:
_instance = None
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance.pipe = None
cls._instance.model = None
cls._instance.refiner = None
cls._instance.upscaler = None
return cls._instance
def _flush(self):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
def _should_unload_pipeline(self, model=""):
if self.pipe is None:
return False
if self.model.lower() != model.lower():
return True
return False
def _should_unload_refiner(self, refiner):
if self.refiner is not None and not refiner:
return True
return False
def _should_unload_upscaler(self, scale=1):
return self.upscaler is not None and scale == 1
def _unload(self, model, refiner, scale):
to_unload = []
if self._should_unload_pipeline(model):
to_unload.append("model")
to_unload.append("pipe")
if self._should_unload_refiner(refiner):
to_unload.append("refiner")
if self._should_unload_upscaler(scale):
to_unload.append("upscaler")
for component in to_unload:
delattr(self, component)
self._flush()
for component in to_unload:
setattr(self, component, None)
def _load_pipeline(self, kind, model, tqdm, **kwargs):
pipeline = Config.PIPELINES[kind]
if self.pipe is None:
try:
print(f"Loading {model}...")
self.model = model
self.pipe = pipeline.from_pretrained(model, **kwargs).to("cuda")
if self.refiner is not None:
self.refiner.vae = self.pipe.vae
self.refiner.scheduler = self.pipe.scheduler
self.refiner.tokenizer_2 = self.pipe.tokenizer_2
self.refiner.text_encoder_2 = self.pipe.text_encoder_2
except Exception as e:
print(f"Error loading {model}: {e}")
self.model = None
self.pipe = None
return
if not isinstance(self.pipe, pipeline):
self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
if self.pipe is not None:
self.pipe.set_progress_bar_config(disable=not tqdm)
def _load_refiner(self, refiner, tqdm, **kwargs):
if self.refiner is None and refiner:
model = Config.REFINER_MODEL
pipeline = Config.PIPELINES["img2img"]
try:
print(f"Loading {model}...")
self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda")
except Exception as e:
print(f"Error loading {model}: {e}")
self.refiner = None
return
if self.refiner is not None:
self.refiner.set_progress_bar_config(disable=not tqdm)
def _load_upscaler(self, scale=1):
if scale > 1 and self.upscaler is None:
print(f"Loading {scale}x upscaler...")
self.upscaler = RealESRGAN(scale, "cuda")
self.upscaler.load_weights()
def _load_deepcache(self, interval=1):
has_deepcache = hasattr(self.pipe, "deepcache")
if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
return
if has_deepcache:
self.pipe.deepcache.disable()
else:
self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
self.pipe.deepcache.set_params(cache_interval=interval)
self.pipe.deepcache.enable()
def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, tqdm):
model_lower = model.lower()
scheduler_kwargs = {
"beta_start": 0.00085,
"beta_end": 0.012,
"beta_schedule": "scaled_linear",
"timestep_spacing": "leading",
"steps_offset": 1,
}
if scheduler not in ["DDIM", "Euler a"]:
scheduler_kwargs["use_karras_sigmas"] = karras
# https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
if scheduler == "DDIM":
scheduler_kwargs["clip_sample"] = False
scheduler_kwargs["set_alpha_to_one"] = False
# no fp16 variant (already half-precision)
if model_lower not in ["cagliostrolab/animagine-xl-3.1", "fluently/fluently-xl-final"]:
variant = "fp16"
else:
variant = None
dtype = torch.float16
pipe_kwargs = {
"variant": variant,
"torch_dtype": dtype,
"add_watermarker": False,
"scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
"vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype),
}
self._unload(model, refiner, scale)
self._load_pipeline(kind, model, tqdm, **pipe_kwargs)
# error loading model
if self.pipe is None:
return None, None, None
same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
same_karras = (
not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
or self.pipe.scheduler.config.use_karras_sigmas == karras
)
# same model, different scheduler
if self.model.lower() == model_lower:
if not same_scheduler:
print(f"Switching to {scheduler}...")
if not same_karras:
print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
if not same_scheduler or not same_karras:
self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
if self.refiner is not None:
self.refiner.scheduler = self.pipe.scheduler
# https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/model_index.json
refiner_kwargs = {
"variant": "fp16",
"torch_dtype": dtype,
"add_watermarker": False,
"requires_aesthetics_score": True,
"force_zeros_for_empty_prompt": False,
"vae": self.pipe.vae,
"scheduler": self.pipe.scheduler,
"tokenizer_2": self.pipe.tokenizer_2,
"text_encoder_2": self.pipe.text_encoder_2,
}
self._load_refiner(refiner, tqdm, **refiner_kwargs)
self._load_upscaler(scale)
self._load_deepcache(deepcache)
return self.pipe, self.refiner, self.upscaler
|