File size: 7,342 Bytes
ae18532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0177258
 
 
 
ae18532
 
 
 
 
 
 
 
 
 
 
 
0177258
 
 
 
 
 
ae18532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0177258
ae18532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3338233
 
ae18532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gc
from threading import Lock
from warnings import filterwarnings

import torch
from DeepCache import DeepCacheSDHelper
from diffusers.models import AutoencoderKL

from .config import Config
from .upscaler import RealESRGAN

__import__("diffusers").logging.set_verbosity_error()
filterwarnings("ignore", category=FutureWarning, module="torch")
filterwarnings("ignore", category=FutureWarning, module="diffusers")


class Loader:
    _instance = None
    _lock = Lock()

    def __new__(cls):
        with cls._lock:
            if cls._instance is None:
                cls._instance = super().__new__(cls)
                cls._instance.pipe = None
                cls._instance.model = None
                cls._instance.refiner = None
                cls._instance.upscaler = None
        return cls._instance

    def _flush(self):
        gc.collect()
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
        torch.cuda.synchronize()

    def _should_unload_pipeline(self, model=""):
        if self.pipe is None:
            return False
        if self.model.lower() != model.lower():
            return True
        return False

    def _should_unload_refiner(self, refiner):
        if self.refiner is not None and not refiner:
            return True
        return False

    def _should_unload_upscaler(self, scale=1):
        return self.upscaler is not None and scale == 1

    def _unload(self, model, refiner, scale):
        to_unload = []
        if self._should_unload_pipeline(model):
            to_unload.append("model")
            to_unload.append("pipe")
        if self._should_unload_refiner(refiner):
            to_unload.append("refiner")
        if self._should_unload_upscaler(scale):
            to_unload.append("upscaler")
        for component in to_unload:
            delattr(self, component)
        self._flush()
        for component in to_unload:
            setattr(self, component, None)

    def _load_pipeline(self, kind, model, tqdm, **kwargs):
        pipeline = Config.PIPELINES[kind]
        if self.pipe is None:
            try:
                print(f"Loading {model}...")
                self.model = model
                self.pipe = pipeline.from_pretrained(model, **kwargs).to("cuda")
                if self.refiner is not None:
                    self.refiner.vae = self.pipe.vae
                    self.refiner.scheduler = self.pipe.scheduler
                    self.refiner.tokenizer_2 = self.pipe.tokenizer_2
                    self.refiner.text_encoder_2 = self.pipe.text_encoder_2
            except Exception as e:
                print(f"Error loading {model}: {e}")
                self.model = None
                self.pipe = None
                return
        if not isinstance(self.pipe, pipeline):
            self.pipe = pipeline.from_pipe(self.pipe).to("cuda")
        if self.pipe is not None:
            self.pipe.set_progress_bar_config(disable=not tqdm)

    def _load_refiner(self, refiner, tqdm, **kwargs):
        if self.refiner is None and refiner:
            model = Config.REFINER_MODEL
            pipeline = Config.PIPELINES["img2img"]
            try:
                print(f"Loading {model}...")
                self.refiner = pipeline.from_pretrained(model, **kwargs).to("cuda")
            except Exception as e:
                print(f"Error loading {model}: {e}")
                self.refiner = None
                return
        if self.refiner is not None:
            self.refiner.set_progress_bar_config(disable=not tqdm)

    def _load_upscaler(self, scale=1):
        if scale > 1 and self.upscaler is None:
            print(f"Loading {scale}x upscaler...")
            self.upscaler = RealESRGAN(scale, "cuda")
            self.upscaler.load_weights()

    def _load_deepcache(self, interval=1):
        has_deepcache = hasattr(self.pipe, "deepcache")
        if has_deepcache and self.pipe.deepcache.params["cache_interval"] == interval:
            return
        if has_deepcache:
            self.pipe.deepcache.disable()
        else:
            self.pipe.deepcache = DeepCacheSDHelper(pipe=self.pipe)
        self.pipe.deepcache.set_params(cache_interval=interval)
        self.pipe.deepcache.enable()

    def load(self, kind, model, scheduler, deepcache, scale, karras, refiner, tqdm):
        model_lower = model.lower()

        scheduler_kwargs = {
            "beta_start": 0.00085,
            "beta_end": 0.012,
            "beta_schedule": "scaled_linear",
            "timestep_spacing": "leading",
            "steps_offset": 1,
        }

        if scheduler not in ["DDIM", "Euler a"]:
            scheduler_kwargs["use_karras_sigmas"] = karras

        # https://github.com/huggingface/diffusers/blob/8a3f0c1/scripts/convert_original_stable_diffusion_to_diffusers.py#L939
        if scheduler == "DDIM":
            scheduler_kwargs["clip_sample"] = False
            scheduler_kwargs["set_alpha_to_one"] = False

        # no fp16 variant (already half-precision)
        if model_lower not in ["cagliostrolab/animagine-xl-3.1", "fluently/fluently-xl-final"]:
            variant = "fp16"
        else:
            variant = None

        dtype = torch.float16
        pipe_kwargs = {
            "variant": variant,
            "torch_dtype": dtype,
            "add_watermarker": False,
            "scheduler": Config.SCHEDULERS[scheduler](**scheduler_kwargs),
            "vae": AutoencoderKL.from_pretrained(Config.VAE_MODEL, torch_dtype=dtype),
        }

        self._unload(model, refiner, scale)
        self._load_pipeline(kind, model, tqdm, **pipe_kwargs)

        # error loading model
        if self.pipe is None:
            return None, None, None

        same_scheduler = isinstance(self.pipe.scheduler, Config.SCHEDULERS[scheduler])
        same_karras = (
            not hasattr(self.pipe.scheduler.config, "use_karras_sigmas")
            or self.pipe.scheduler.config.use_karras_sigmas == karras
        )

        # same model, different scheduler
        if self.model.lower() == model_lower:
            if not same_scheduler:
                print(f"Switching to {scheduler}...")
            if not same_karras:
                print(f"{'Enabling' if karras else 'Disabling'} Karras sigmas...")
            if not same_scheduler or not same_karras:
                self.pipe.scheduler = Config.SCHEDULERS[scheduler](**scheduler_kwargs)
                if self.refiner is not None:
                    self.refiner.scheduler = self.pipe.scheduler

        # https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/blob/main/model_index.json
        refiner_kwargs = {
            "variant": "fp16",
            "torch_dtype": dtype,
            "add_watermarker": False,
            "requires_aesthetics_score": True,
            "force_zeros_for_empty_prompt": False,
            "vae": self.pipe.vae,
            "scheduler": self.pipe.scheduler,
            "tokenizer_2": self.pipe.tokenizer_2,
            "text_encoder_2": self.pipe.text_encoder_2,
        }

        self._load_refiner(refiner, tqdm, **refiner_kwargs)
        self._load_upscaler(scale)
        self._load_deepcache(deepcache)
        return self.pipe, self.refiner, self.upscaler