File size: 32,229 Bytes
3943768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 |
import ast
import asyncio
import base64
import functools
import io
import json
import os
import platform
import re
import sys
import threading
import time
import traceback
import uuid
from collections import deque
import filelock
import numpy as np
from log import logger
from openai_server.backend_utils import convert_messages_to_structure, convert_gen_kwargs
def start_faulthandler():
# If hit server or any subprocess with signal SIGUSR1, it'll print out all threads stack trace, but wont't quit or coredump
# If more than one fork tries to write at same time, then looks corrupted.
import faulthandler
# SIGUSR1 in h2oai/__init__.py as well
faulthandler.enable()
if hasattr(faulthandler, 'register'):
# windows/mac
import signal
faulthandler.register(signal.SIGUSR1)
start_faulthandler()
def decode(x, encoding_name="cl100k_base"):
try:
import tiktoken
encoding = tiktoken.get_encoding(encoding_name)
return encoding.decode(x)
except ImportError:
return ''
def encode(x, encoding_name="cl100k_base"):
try:
import tiktoken
encoding = tiktoken.get_encoding(encoding_name)
return encoding.encode(x, disallowed_special=())
except ImportError:
return []
def count_tokens(x, encoding_name="cl100k_base"):
try:
import tiktoken
encoding = tiktoken.get_encoding(encoding_name)
return len(encoding.encode(x, disallowed_special=()))
except ImportError:
return 0
def get_gradio_auth(user=None, verbose=False):
if verbose:
print("GRADIO_SERVER_PORT:", os.getenv('GRADIO_SERVER_PORT'), file=sys.stderr)
print("GRADIO_GUEST_NAME:", os.getenv('GRADIO_GUEST_NAME'), file=sys.stderr)
print("GRADIO_AUTH:", os.getenv('GRADIO_AUTH'), file=sys.stderr)
print("GRADIO_AUTH_ACCESS:", os.getenv('GRADIO_AUTH_ACCESS'), file=sys.stderr)
gradio_prefix = os.getenv('GRADIO_PREFIX', 'http')
if platform.system() in ['Darwin', 'Windows']:
gradio_host = os.getenv('GRADIO_SERVER_HOST', '127.0.0.1')
else:
gradio_host = os.getenv('GRADIO_SERVER_HOST', '0.0.0.0')
gradio_port = int(os.getenv('GRADIO_SERVER_PORT', '7860'))
gradio_url = f'{gradio_prefix}://{gradio_host}:{gradio_port}'
auth = os.environ.get('GRADIO_AUTH', 'None')
auth_access = os.environ.get('GRADIO_AUTH_ACCESS', 'open')
guest_name = os.environ.get('GRADIO_GUEST_NAME', '')
is_guest = False
if auth != 'None':
if user:
user_split = user.split(':')
assert len(user_split) >= 2, "username cannot contain : character and must be in form username:password"
username = user_split[0]
if username == guest_name:
is_guest = True
auth_kwargs = dict(auth=(username, ':'.join(user_split[1:])))
elif guest_name:
if auth_access == 'closed':
if os.getenv('H2OGPT_OPENAI_USER'):
user = os.getenv('H2OGPT_OPENAI_USER')
user_split = user.split(':')
assert len(
user_split) >= 2, "username cannot contain : character and must be in form username:password"
auth_kwargs = dict(auth=(user_split[0], ':'.join(user_split[1:])))
is_guest = True
else:
raise ValueError(
"If closed access, must set ENV H2OGPT_OPENAI_USER (e.g. as 'user:pass' combination) to login from OpenAI->Gradio with some specific user.")
else:
auth_kwargs = dict(auth=(guest_name, guest_name))
is_guest = True
elif auth_access == 'open':
auth_kwargs = dict(auth=(str(uuid.uuid4()), str(uuid.uuid4())))
is_guest = True
else:
auth_kwargs = None
else:
auth_kwargs = dict()
return auth_kwargs, gradio_url, is_guest
def get_gradio_client(user=None, verbose=False):
auth_kwargs, gradio_url, is_guest = get_gradio_auth(user=user, verbose=verbose)
print("OpenAI user: %s" % auth_kwargs, flush=True)
try:
from gradio_utils.grclient import GradioClient as Client
except ImportError:
print("Using slower gradio API, for speed ensure gradio_utils/grclient.py exists.")
from gradio_client import Client
if auth_kwargs:
print("Getting gradio client at %s with auth" % gradio_url, flush=True)
client = Client(gradio_url, **auth_kwargs)
if hasattr(client, 'setup'):
with client_lock:
client.setup()
else:
print("BEGIN: Getting non-user gradio client at %s" % gradio_url, flush=True)
client = Client(gradio_url)
if hasattr(client, 'setup'):
with client_lock:
client.setup()
print("END: getting non-user gradio client at %s" % gradio_url, flush=True)
return client
# Global lock for synchronizing client access
client_lock = threading.Lock()
print("global gradio_client", file=sys.stderr)
gradio_client_list = {}
def sanitize(name):
bad_chars = ['[', ']', ',', '/', '\\', '\\w', '\\s', '-', '+', '\"', '\'', '>', '<', ' ', '=', ')', '(', ':', '^']
for char in bad_chars:
name = name.replace(char, "_")
return name
def get_client(user=None):
os.makedirs('locks', exist_ok=True)
user_lock_file = os.path.join('locks', 'user_%s.lock' % sanitize(str(user)))
user_lock = filelock.FileLock(user_lock_file)
# concurrent gradio client
with user_lock:
print(list(gradio_client_list.keys()))
gradio_client = gradio_client_list.get(user)
if gradio_client is None:
print("Getting fresh client: %s" % str(user), file=sys.stderr)
# assert user is not None, "Need user set to username:password"
gradio_client = get_gradio_client(user=user, verbose=True)
with user_lock:
gradio_client_list[user] = gradio_client
got_fresh_client = True
else:
print("re-used gradio_client for user: %s" % user, file=sys.stderr)
got_fresh_client = False
if hasattr(gradio_client, 'clone'):
print("cloning for gradio_client.auth=%s" % str(gradio_client.auth), file=sys.stderr)
gradio_client0 = gradio_client
gradio_client = gradio_client0.clone()
print("client.auth=%s" % str(gradio_client.auth), file=sys.stderr)
try:
new_hash = gradio_client.get_server_hash()
assert new_hash
except Exception as e:
ex = traceback.format_exc()
print(f"re-getting fresh client due to exception: {ex}", file=sys.stderr)
# just get fresh client if any issues
print(f"re-getting fresh client due to exception: {str(e)}", file=sys.stderr)
gradio_client_list[user] = get_gradio_client(user=user, verbose=True)
if not hasattr(gradio_client, 'clone') and not got_fresh_client:
print(
"re-get to ensure concurrency ok, slower if API is large, for speed ensure gradio_utils/grclient.py exists.",
file=sys.stderr)
gradio_client = get_gradio_client(user=user)
gradio_client_list[user] = gradio_client
# even if not auth, want to login
auth_kwargs, gradio_url, is_guest = get_gradio_auth(user=user)
if user and not is_guest and auth_kwargs and 'auth' in auth_kwargs:
username = auth_kwargs['auth'][0]
password = auth_kwargs['auth'][1]
print("start login num lock", flush=True)
num_model_lock = int(gradio_client.predict(api_name='/num_model_lock'))
print("finish login num lock", flush=True)
chatbots = [None] * (2 + num_model_lock)
h2ogpt_key = ''
visible_models = []
side_bar_text = ''
doc_count_text = ''
submit_buttons_text = ''
visible_models_text = ''
chat_tab_text = ''
doc_selection_tab_text = ''
doc_view_tab_text = ''
chat_history_tab_text = ''
expert_tab_text = ''
models_tab_text = ''
system_tab_text = ''
tos_tab_text = ''
login_tab_text = ''
hosts_tab_text = ''
print("start login", flush=True)
t0_login = time.time()
gradio_client.predict(None,
h2ogpt_key, visible_models,
side_bar_text, doc_count_text, submit_buttons_text, visible_models_text,
chat_tab_text, doc_selection_tab_text, doc_view_tab_text, chat_history_tab_text,
expert_tab_text, models_tab_text, system_tab_text, tos_tab_text,
login_tab_text, hosts_tab_text,
username, password,
*tuple(chatbots), api_name='/login')
print("finish login: %s" % (time.time() - t0_login), flush=True)
return gradio_client
def get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=False):
res_str = outputs_list[job_outputs_num + num]
res_dict = ast.literal_eval(res_str)
if verbose:
logger.info('Stream %d: %s\n\n %s\n\n' % (num, res_dict['response'], res_dict))
logger.info('Stream %d' % (job_outputs_num + num))
if 'error' in res_dict and res_dict['error']:
raise RuntimeError(res_dict['error'])
elif 'error_ex' in res_dict and res_dict['error_ex']:
raise RuntimeError(res_dict['error_ex'])
elif 'response' not in res_dict:
raise RuntimeError("No response in res: %s" % res_dict)
else:
response = res_dict['response']
chunk = response[len(last_response):]
return chunk, response, res_dict
async def get_response(chunk_response=True, **kwargs):
assert kwargs['query'] is not None, "query must not be None"
import ast
stream_output = kwargs.get('stream_output', True)
stream_output_orig = stream_output
# always force streaming to avoid blocking server
stream_output = True
verbose = kwargs.get('verbose', False)
kwargs = convert_gen_kwargs(kwargs)
# WIP:
# if gen_kwargs.get('skip_gradio'):
# fun_with_dict_str_plain
# concurrent gradio client
client = get_client(user=kwargs.get('user'))
res_dict = {}
if stream_output:
job = client.submit(str(dict(kwargs)), api_name='/submit_nochat_api')
job_outputs_num = 0
last_response = ''
while not job.done():
outputs_list = job.outputs().copy()
job_outputs_num_new = len(outputs_list[job_outputs_num:])
for num in range(job_outputs_num_new):
chunk, response, res_dict = get_chunk(outputs_list, job_outputs_num, last_response, num,
verbose=verbose)
if stream_output_orig:
if chunk_response:
if chunk:
yield chunk
else:
yield response
last_response = response
await asyncio.sleep(0.005)
await asyncio.sleep(0.005)
job_outputs_num += job_outputs_num_new
outputs_list = job.outputs().copy()
job_outputs_num_new = len(outputs_list[job_outputs_num:])
for num in range(job_outputs_num_new):
chunk, response, res_dict = get_chunk(outputs_list, job_outputs_num, last_response, num, verbose=verbose)
if stream_output_orig:
if chunk_response:
if chunk:
yield chunk
else:
yield response
last_response = response
await asyncio.sleep(0.005)
job_outputs_num += job_outputs_num_new
if not stream_output_orig:
# behave as if not streaming
yield res_dict['response']
if verbose:
logger.info("total job_outputs_num=%d" % job_outputs_num)
else:
res_str = client.predict(str(dict(kwargs)), api_name='/submit_nochat_api')
res_dict = ast.literal_eval(res_str)
yield res_dict['response']
# for usage
res_dict.pop('audio', None)
yield res_dict
def split_concatenated_dicts(concatenated_dicts: str):
# Improved regular expression to handle nested braces
pattern = r'{(?:[^{}]|{(?:[^{}]|{[^{}]*})*})*}'
try:
matches = re.findall(pattern, concatenated_dicts)
except re.error as e:
print(f"Regular expression error: {e}")
return []
except MemoryError:
print("Memory error: Input might be too large")
return []
result = []
for match in matches:
try:
result.append(ast.literal_eval(match))
except (ValueError, SyntaxError):
# If parsing fails, add the string as is
result.append(match)
return result
def get_generator(instruction, gen_kwargs, use_agent=False, stream_output=False, verbose=False):
gen_kwargs['stream_output'] = stream_output
gen_kwargs['query'] = instruction
if gen_kwargs.get('verbose') is None:
# for local debugging
gen_kwargs['verbose'] = verbose
if use_agent:
agent_type = gen_kwargs.get('agent_type', 'auto')
from openai_server.agent_utils import set_dummy_term, run_agent
set_dummy_term() # before autogen imported
if agent_type == 'auto':
agent_type = 'autogen_2agent'
if agent_type in ['autogen_2agent']:
from openai_server.autogen_2agent_backend import run_autogen_2agent
func = functools.partial(run_agent, run_agent_func=run_autogen_2agent)
from openai_server.autogen_utils import get_autogen_response
generator = get_autogen_response(func=func, **gen_kwargs)
elif agent_type in ['autogen_multi_agent']:
from openai_server.autogen_multi_agent_backend import run_autogen_multi_agent
func = functools.partial(run_agent, run_agent_func=run_autogen_multi_agent)
from openai_server.autogen_utils import get_autogen_response
generator = get_autogen_response(func=func, **gen_kwargs)
else:
raise ValueError("No such agent_type %s" % agent_type)
else:
generator = get_response(**gen_kwargs)
return generator
async def achat_completion_action(body: dict, stream_output=False):
messages = body.get('messages', [])
object_type = 'chat.completions' if not stream_output else 'chat.completions.chunk'
created_time = int(time.time())
req_id = "chat_cmpl_id-%s" % str(uuid.uuid4())
resp_list = 'choices'
gen_kwargs = body
# Consecutive Autogen messages may have the same role,
# especially when agent_type involves group chat messages.
# Therefore, they need to be concatenated.
agent_type = gen_kwargs.get('agent_type', 'auto')
if agent_type == "autogen_multi_agent":
concat_assistant = concat_user = True
else:
concat_assistant = concat_user = False
instruction, system_message, history, image_files = convert_messages_to_structure(
messages=messages,
concat_tool=True, # always concat tool calls
concat_assistant=concat_assistant,
concat_user=concat_user,
)
# get from messages, unless none, then try to get from gen_kwargs from extra_body
image_file = image_files if image_files else gen_kwargs.get('image_file', [])
history = history if history else gen_kwargs.get('chat_conversation', [])
gen_kwargs.update({
'system_prompt': system_message,
'chat_conversation': history,
'stream_output': stream_output,
'image_file': image_file,
})
use_agent = gen_kwargs.get('use_agent', False)
if use_agent and os.environ.get('is_agent_server', '0') == '0':
raise ValueError("Agent is not enabled on this server.")
model = gen_kwargs.get('model', '')
def chat_streaming_chunk(content):
# begin streaming
msg1 = {'role': 'assistant', 'content': content}
if gen_kwargs.get('guided_json', {}):
contents = split_concatenated_dicts(msg1['content'])
msg1['tool_calls'] = [
dict(function=dict(name=gen_kwargs['tool_choice'], arguments=json.dumps(x)), id=str(uuid.uuid4())) for x
in
contents]
chunk = {
"id": req_id,
"object": object_type,
"created": created_time,
"model": model,
resp_list: [{
"index": 0,
"finish_reason": None,
"message": msg1,
"delta": msg1,
}],
}
return chunk
if stream_output:
yield chat_streaming_chunk('')
if instruction is None and gen_kwargs.get('langchain_action', '') == 'Query':
instruction = "Continue your response. If your prior response was cut short, then continue exactly at end of your last response without any ellipses, else continue your response by starting with new line and proceeding with an additional useful and related response."
if instruction is None:
instruction = '' # allowed by h2oGPT, e.g. for summarize or extract
generator = get_generator(instruction, gen_kwargs, use_agent=use_agent, stream_output=stream_output)
answer = ''
usage = {}
async for chunk in generator:
if stream_output:
if isinstance(chunk, dict):
usage.update(chunk)
else:
chat_chunk = chat_streaming_chunk(chunk)
answer += chunk
yield chat_chunk
else:
if isinstance(chunk, dict):
usage.update(chunk)
if 'response' in chunk:
# wil use this if exists
answer = chunk['response']
else:
answer = ''
else:
# will use this first if exists
answer = chunk
await asyncio.sleep(0.005)
stop_reason = "stop"
real_prompt_tokens = usage.get('save_dict', {}).get('extra_dict', {}).get('num_prompt_tokens')
if real_prompt_tokens is not None:
token_count = real_prompt_tokens
else:
token_count = count_tokens(instruction)
real_completion_tokens = usage.get('save_dict', {}).get('extra_dict', {}).get('ntokens')
if real_completion_tokens is not None:
completion_token_count = real_completion_tokens
else:
completion_token_count = count_tokens(answer)
usage.update({
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count,
})
if stream_output:
chunk = chat_streaming_chunk('')
chunk[resp_list][0]['finish_reason'] = stop_reason
chunk['usage'] = usage
yield chunk
else:
msg1 = {"role": "assistant", "content": answer}
if gen_kwargs.get('guided_json', {}):
contents = split_concatenated_dicts(msg1['content'])
msg1['tool_calls'] = [
dict(function=dict(name=gen_kwargs['tool_choice'], arguments=json.dumps(x)), id=str(uuid.uuid4())) for x
in contents]
resp = {
"id": req_id,
"object": object_type,
"created": created_time,
"model": model,
resp_list: [{
"index": 0,
"finish_reason": stop_reason,
"message": msg1,
}],
"usage": usage
}
yield resp
async def acompletions_action(body: dict, stream_output=False):
object_type = 'text_completion.chunk' if stream_output else 'text_completion'
created_time = int(time.time())
res_id = "res_id-%s" % str(uuid.uuid4())
resp_list = 'choices'
prompt_str = 'prompt'
assert prompt_str in body, "Missing prompt"
gen_kwargs = body
gen_kwargs['stream_output'] = stream_output
use_agent = gen_kwargs.get('use_agent', False)
if use_agent and os.environ.get('is_agent_server', '0') == '0':
raise ValueError("Agents not enabled on this server.")
usage = {}
if not stream_output:
prompt_arg = body[prompt_str]
if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)):
prompt_arg = [prompt_arg]
resp_list_data = []
total_completion_token_count = 0
total_prompt_token_count = 0
for idx, prompt in enumerate(prompt_arg, start=0):
token_count = count_tokens(prompt)
total_prompt_token_count += token_count
generator = get_generator(prompt, gen_kwargs, use_agent=use_agent, stream_output=stream_output)
ret = {}
response = ""
try:
async for last_value in generator:
if isinstance(last_value, dict):
ret = last_value
else:
response = last_value
except StopIteration:
pass
if isinstance(ret, dict):
usage.update(ret)
if isinstance(response, str):
completion_token_count = count_tokens(response)
total_completion_token_count += completion_token_count
else:
# assume image
total_completion_token_count = 1500
stop_reason = "stop"
res_idx = {
"index": idx,
"finish_reason": stop_reason,
"text": response,
"logprobs": None,
}
resp_list_data.extend([res_idx])
usage.update({
"prompt_tokens": total_prompt_token_count,
"completion_tokens": total_completion_token_count,
"total_tokens": total_prompt_token_count + total_completion_token_count,
})
res_dict = {
"id": res_id,
"object": object_type,
"created": created_time,
"model": '',
resp_list: resp_list_data,
"usage": usage
}
yield res_dict
else:
prompt = body[prompt_str]
token_count = count_tokens(prompt)
def text_streaming_chunk(content):
# begin streaming
chunk = {
"id": res_id,
"object": object_type,
"created": created_time,
"model": '',
resp_list: [{
"index": 0,
"finish_reason": None,
"text": content,
"logprobs": None,
}],
}
return chunk
generator = get_generator(prompt, gen_kwargs, use_agent=use_agent, stream_output=stream_output)
response = ''
usage = {}
async for chunk in generator:
if isinstance(chunk, dict):
usage.update(chunk)
else:
response += chunk
yield_chunk = text_streaming_chunk(chunk)
yield yield_chunk
await asyncio.sleep(0.005)
completion_token_count = count_tokens(response)
stop_reason = "stop"
chunk = text_streaming_chunk('')
chunk[resp_list][0]["finish_reason"] = stop_reason
usage.update({
"prompt_tokens": token_count,
"completion_tokens": completion_token_count,
"total_tokens": token_count + completion_token_count,
})
chunk["usage"] = usage
yield chunk
async def astream_chat_completions(body: dict, stream_output=True):
async for resp in achat_completion_action(body, stream_output=stream_output):
yield resp
async def astream_completions(body: dict, stream_output=True):
async for resp in acompletions_action(body, stream_output=stream_output):
yield resp
def get_model_info():
# concurrent gradio client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
return dict(model_names=model_dict)
def get_model_list():
# concurrent gradio client
client = get_client()
model_dict = ast.literal_eval(client.predict(api_name='/model_names'))
base_models = [x['base_model'] for x in model_dict]
return dict(model_names=base_models)
def split_audio_on_silence(audio_bytes):
from pydub import AudioSegment
from pydub.silence import split_on_silence
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav")
chunks = split_on_silence(audio, min_silence_len=500, silence_thresh=-40, keep_silence=200)
chunk_bytes = []
for chunk in chunks:
chunk_buffer = io.BytesIO()
chunk.export(chunk_buffer, format="wav")
chunk_bytes.append(chunk_buffer.getvalue())
return chunk_bytes
def split_audio_fixed_intervals(audio_bytes, interval_ms=10000):
from pydub import AudioSegment
audio = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav")
chunks = [audio[i:i + interval_ms] for i in range(0, len(audio), interval_ms)]
chunk_bytes = []
for chunk in chunks:
chunk_buffer = io.BytesIO()
chunk.export(chunk_buffer, format="wav")
chunk_bytes.append(chunk_buffer.getvalue())
return chunk_bytes
async def audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs):
if chunk != 'none':
# break-up audio file
if chunk == 'silence':
audio_files = split_audio_on_silence(audio_file)
else:
audio_files = split_audio_fixed_intervals(audio_file, interval_ms=chunk)
for audio_file1 in audio_files:
async for text in _audio_to_text(model, audio_file1, stream, response_format, chunk, **kwargs):
yield text
else:
async for text in _audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs):
yield text
async def _audio_to_text(model, audio_file, stream, response_format, chunk, **kwargs):
# assumes enable_stt=True set for h2oGPT
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'):
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY')))
client = get_client(kwargs.get('user'))
h2ogpt_key = kwargs.get('h2ogpt_key', '')
# string of dict for input
if not isinstance(audio_file, str):
audio_file = base64.b64encode(audio_file).decode('utf-8')
inputs = dict(audio_file=audio_file, stream_output=stream, h2ogpt_key=h2ogpt_key)
if stream:
job = client.submit(*tuple(list(inputs.values())), api_name='/transcribe_audio_api')
# ensure no immediate failure (only required for testing)
import concurrent.futures
try:
e = job.exception(timeout=0.2)
if e is not None:
raise RuntimeError(e)
except concurrent.futures.TimeoutError:
pass
n = 0
for text in job:
yield dict(text=text.strip())
n += 1
# get rest after job done
outputs = job.outputs().copy()
for text in outputs[n:]:
yield dict(text=text.strip())
n += 1
else:
text = client.predict(*tuple(list(inputs.values())), api_name='/transcribe_audio_api')
yield dict(text=text.strip())
async def text_to_audio(model, voice, input, stream, response_format, **kwargs):
# tts_model = 'microsoft/speecht5_tts'
# tts_model = 'tts_models/multilingual/multi-dataset/xtts_v2'
# assumes enable_tts=True set for h2oGPT
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'):
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY')))
client = get_client(user=kwargs.get('user'))
h2ogpt_key = kwargs.get('h2ogpt_key')
if not voice or voice in ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']:
# ignore OpenAI voices
speaker = "SLT (female)"
chatbot_role = "Female AI Assistant"
else:
# don't know which model used
speaker = voice
chatbot_role = voice
# string of dict for input
inputs = dict(chatbot_role=chatbot_role, speaker=speaker, tts_language='autodetect', tts_speed=1.0,
prompt=input, stream_output=stream,
h2ogpt_key=h2ogpt_key)
if stream:
job = client.submit(*tuple(list(inputs.values())), api_name='/speak_text_api')
# ensure no immediate failure (only required for testing)
import concurrent.futures
try:
e = job.exception(timeout=0.2)
if e is not None:
raise RuntimeError(e)
except concurrent.futures.TimeoutError:
pass
n = 0
for audio_str in job:
yield audio_str_to_bytes(audio_str, response_format=response_format)
await asyncio.sleep(0.005)
n += 1
# get rest after job done
outputs = job.outputs().copy()
for audio_str in outputs[n:]:
yield audio_str_to_bytes(audio_str, response_format=response_format)
await asyncio.sleep(0.005)
n += 1
else:
audio_str = client.predict(*tuple(list(inputs.values())), api_name='/speak_text_api')
yield audio_str_to_bytes(audio_str, response_format=response_format)
def audio_str_to_bytes(audio_str1, response_format='wav'):
if audio_str1 is None:
return b''
# Parse the input string to a dictionary
audio_dict = ast.literal_eval(audio_str1)
# Extract the base64 audio data and decode it
audio = audio_dict['audio']
# Create a BytesIO stream from the binary data
s = io.BytesIO(audio)
# Extract sample rate and define other audio properties
sr = audio_dict['sr']
channels = 1 # Assuming mono channel, adjust if necessary
sample_width = 2 # Assuming 16-bit samples (2 bytes), adjust if necessary
# Use from_raw to correctly interpret the raw audio data
from pydub import AudioSegment
audio_segment = AudioSegment.from_raw(
s,
sample_width=sample_width,
frame_rate=sr,
channels=channels
)
# Export the AudioSegment to a BytesIO object as WAV
output_stream = io.BytesIO()
audio_segment.export(output_stream, format=response_format)
output_bytes = output_stream.getvalue()
return output_bytes
def list_to_bytes(lst: list) -> str:
float_array = np.array(lst, dtype="float32")
bytes_array = float_array.tobytes()
encoded_bytes = base64.b64encode(bytes_array)
ascii_string = encoded_bytes.decode('ascii')
return ascii_string
def text_to_embedding(model, text, encoding_format, **kwargs):
# assumes enable_stt=True set for h2oGPT
if os.getenv('GRADIO_H2OGPT_H2OGPT_KEY') and not kwargs.get('h2ogpt_key'):
kwargs.update(dict(h2ogpt_key=os.getenv('GRADIO_H2OGPT_H2OGPT_KEY')))
client = get_client(kwargs.get('user'))
h2ogpt_key = kwargs.get('h2ogpt_key', '')
inputs = dict(text=text, h2ogpt_key=h2ogpt_key, is_list=str(isinstance(text, list)))
embeddings = client.predict(*tuple(list(inputs.values())), api_name='/embed_api')
embeddings = ast.literal_eval(embeddings)
if encoding_format == "base64":
data = [{"object": "embedding", "embedding": list_to_bytes(emb), "index": n} for n, emb in
enumerate(embeddings)]
elif encoding_format == "float":
data = [{"object": "embedding", "embedding": emb, "index": n} for n, emb in enumerate(embeddings)]
else:
data = [{"object": "embedding", "embedding": emb.tolist(), "index": n} for n, emb in enumerate(embeddings)]
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
return response
|