Upload 2 files
Browse files- CLIP_CreativeTesting.py +76 -0
- detect_adv.py +139 -0
CLIP_CreativeTesting.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
# Create function to pass input image and text to model and return the label probabilities
|
6 |
+
import torch
|
7 |
+
import time
|
8 |
+
from detect_adv import detect_text, analyze_layout, analyze_shapes
|
9 |
+
from transformers import CLIPProcessor, CLIPModel
|
10 |
+
# Streamlit code to upload image and output label probabilities
|
11 |
+
import streamlit as st
|
12 |
+
import tempfile
|
13 |
+
|
14 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
15 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
16 |
+
|
17 |
+
|
18 |
+
def get_label_probs(image, text, model, processor):
|
19 |
+
torch.cuda.empty_cache() # Release cached memory
|
20 |
+
inputs = processor(text=text, images=image, return_tensors="pt", padding=True)
|
21 |
+
inputs = inputs
|
22 |
+
outputs = model(**inputs)
|
23 |
+
logits_per_image = outputs.logits_per_image
|
24 |
+
probs = logits_per_image.softmax(dim=1)
|
25 |
+
# Clear GPU memory
|
26 |
+
torch.cuda.empty_cache()
|
27 |
+
del inputs, outputs, logits_per_image
|
28 |
+
return probs
|
29 |
+
|
30 |
+
text = ['Advertisement Creative(Contains Text)', 'Not an Advertisement Creative(Contains No Text)', 'Simple Product Image and not an Advertisement)']
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
st.title("Advertisement Detection using CLIP")
|
35 |
+
|
36 |
+
# Upload image
|
37 |
+
uploaded_image = st.file_uploader("Choose an image...", type="jpg")
|
38 |
+
|
39 |
+
|
40 |
+
if uploaded_image is not None:
|
41 |
+
temp_dir = tempfile.mkdtemp()
|
42 |
+
path = os.path.join(temp_dir, uploaded_image.name)
|
43 |
+
with open(path, "wb") as f:
|
44 |
+
f.write(uploaded_image.getvalue())
|
45 |
+
|
46 |
+
image = Image.open(uploaded_image)
|
47 |
+
st.image(image, caption="Uploaded Image.", use_column_width=True)
|
48 |
+
# Get label probabilities
|
49 |
+
probs = get_label_probs(image, text, model, processor)
|
50 |
+
# Output label probabilities
|
51 |
+
prob = probs.tolist()
|
52 |
+
prob = prob[0]
|
53 |
+
# st.write("Label Probabilities:", prob)
|
54 |
+
# st.write("Label Probabilities:", probs)
|
55 |
+
# # Output predicted label
|
56 |
+
# predicted_label = text[torch.argmax(probs[0])]
|
57 |
+
# st.write("Predicted Label:", predicted_label)
|
58 |
+
|
59 |
+
# Augmenting using classic techniques
|
60 |
+
layout_result = analyze_layout(path)
|
61 |
+
shape_result = analyze_shapes(path)
|
62 |
+
#
|
63 |
+
# # Output classic technique results
|
64 |
+
# st.write("Layout Analysis Result:", layout_result)
|
65 |
+
# st.write("Shape Analysis Result:", shape_result)
|
66 |
+
final_out = False
|
67 |
+
# Find index of max value from list
|
68 |
+
max_index = prob.index(max(prob))
|
69 |
+
if max_index == 0 and (layout_result == True or shape_result == True):
|
70 |
+
final_out = True
|
71 |
+
# Write 'Advertisement' if the image is an advertisement
|
72 |
+
if final_out == True:
|
73 |
+
st.write("Advertisement")
|
74 |
+
else:
|
75 |
+
st.write("Not an Advertisement")
|
76 |
+
|
detect_adv.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from collections import Counter
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
from paddleocr import PaddleOCR, draw_ocr
|
8 |
+
|
9 |
+
# Paddleocr supports Chinese, English, French, German, Korean and Japanese.
|
10 |
+
# You can set the parameter `lang` as `ch`, `en`, `fr`, `german`, `korean`, `japan`
|
11 |
+
# to switch the language model in order.
|
12 |
+
ocr = PaddleOCR(use_angle_cls=True, lang='en') # need to run only once to download and load model into memory
|
13 |
+
def detect_text(image):
|
14 |
+
|
15 |
+
result = ocr.ocr(image, cls=True)
|
16 |
+
txt = ''
|
17 |
+
for idx in range(len(result)):
|
18 |
+
res = result[idx]
|
19 |
+
for line in res:
|
20 |
+
txt += line[1][0]
|
21 |
+
|
22 |
+
return txt
|
23 |
+
def analyze_text(text):
|
24 |
+
marketing_keywords = ['sale', 'offer', 'discount', 'promotion', 'limited', 'buy', 'now', ]
|
25 |
+
|
26 |
+
# Count the occurrences of marketing keywords
|
27 |
+
word_count = Counter([word.lower() for word in text.split()])
|
28 |
+
keyword_count = sum(word_count[keyword] for keyword in marketing_keywords)
|
29 |
+
|
30 |
+
# Classify based on the number of marketing keywords
|
31 |
+
if keyword_count > 2:
|
32 |
+
return "Advertisement"
|
33 |
+
else:
|
34 |
+
return "Normal Product Image"
|
35 |
+
|
36 |
+
|
37 |
+
# Point 2: Layout and Composition Analysis
|
38 |
+
|
39 |
+
def analyze_layout(image_path):
|
40 |
+
|
41 |
+
image = cv2.imread(image_path)
|
42 |
+
|
43 |
+
# Convert image to grayscale
|
44 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
45 |
+
|
46 |
+
# Invert the grayscale image
|
47 |
+
inverted = cv2.bitwise_not(gray)
|
48 |
+
|
49 |
+
# Apply Otsu's thresholding
|
50 |
+
_, thresholded = cv2.threshold(inverted, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
51 |
+
|
52 |
+
# Find contours in the thresholded image
|
53 |
+
contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
54 |
+
|
55 |
+
# Initialize counters
|
56 |
+
asymmetric_count = 0
|
57 |
+
dynamic_shape_count = 0
|
58 |
+
|
59 |
+
# Iterate through contours
|
60 |
+
for contour in contours:
|
61 |
+
# Calculate the bounding rectangle of the contour
|
62 |
+
x, y, w, h = cv2.boundingRect(contour)
|
63 |
+
|
64 |
+
# Calculate aspect ratio
|
65 |
+
aspect_ratio = float(w) / h
|
66 |
+
|
67 |
+
# Check for asymmetric layout
|
68 |
+
if aspect_ratio < 0.8 or aspect_ratio > 1.2:
|
69 |
+
asymmetric_count += 1
|
70 |
+
|
71 |
+
# Check for dynamic shape
|
72 |
+
if len(contour) > 5:
|
73 |
+
_, _, angle = cv2.fitEllipse(contour)
|
74 |
+
if angle > 30 and angle < 150:
|
75 |
+
dynamic_shape_count += 1
|
76 |
+
|
77 |
+
# Determine if it's an advertisement based on criteria
|
78 |
+
is_advertisement = False
|
79 |
+
if asymmetric_count > 1 or dynamic_shape_count > 1:
|
80 |
+
is_advertisement = True
|
81 |
+
|
82 |
+
return is_advertisement
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
# Point 3: Color Analysis
|
89 |
+
def analyze_color(image_path):
|
90 |
+
# Load the image
|
91 |
+
image = cv2.imread(image_path)
|
92 |
+
|
93 |
+
# Convert image to HSV
|
94 |
+
hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
95 |
+
|
96 |
+
# Calculate mean saturation and value
|
97 |
+
mean_saturation = np.mean(hsv_image[:, :, 1])
|
98 |
+
mean_value = np.mean(hsv_image[:, :, 2])
|
99 |
+
|
100 |
+
# Check for high saturation and value (vivid colors)
|
101 |
+
if mean_saturation > 150 and mean_value > 150:
|
102 |
+
return "Advertisement"
|
103 |
+
else:
|
104 |
+
return "Not Advertisement"
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# Point 4: Edge Detection and Shape Analysis
|
109 |
+
def analyze_shapes(image_path):
|
110 |
+
image = cv2.imread(image_path)
|
111 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
112 |
+
edges = cv2.Canny(gray, 100, 200)
|
113 |
+
|
114 |
+
# Find contours
|
115 |
+
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
116 |
+
|
117 |
+
# Check for specific shapes (e.g., arrows, starbursts)
|
118 |
+
for cnt in contours:
|
119 |
+
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
|
120 |
+
if len(approx) in [3, 5, 7]: # Triangles, pentagons, or starbursts
|
121 |
+
return True
|
122 |
+
|
123 |
+
return False
|
124 |
+
|
125 |
+
|
126 |
+
# # Load the image
|
127 |
+
# image = '/home/karun/PycharmProjects/AdGod/250.jpg'
|
128 |
+
# img_open = Image.open(image)
|
129 |
+
#
|
130 |
+
# # Analyze the image using different techniques
|
131 |
+
# text_result = analyze_text(detect_text(image))
|
132 |
+
# layout_result = analyze_layout(image)
|
133 |
+
# color_result = analyze_color(image)
|
134 |
+
# shape_result = analyze_shapes(image)
|
135 |
+
#
|
136 |
+
# # Print the results
|
137 |
+
# print("Text Analysis Result:", text_result)
|
138 |
+
# print("Layout Analysis Result:", layout_result)
|
139 |
+
# print("Shape Analysis Result:", shape_result)
|