|
from toolbox import get_conf, get_pictures_list, encode_image |
|
import base64 |
|
import datetime |
|
import hashlib |
|
import hmac |
|
import json |
|
from urllib.parse import urlparse |
|
import ssl |
|
from datetime import datetime |
|
from time import mktime |
|
from urllib.parse import urlencode |
|
from wsgiref.handlers import format_date_time |
|
import websocket |
|
import threading, time |
|
|
|
timeout_bot_msg = '[Local Message] Request timeout. Network error.' |
|
|
|
class Ws_Param(object): |
|
|
|
def __init__(self, APPID, APIKey, APISecret, gpt_url): |
|
self.APPID = APPID |
|
self.APIKey = APIKey |
|
self.APISecret = APISecret |
|
self.host = urlparse(gpt_url).netloc |
|
self.path = urlparse(gpt_url).path |
|
self.gpt_url = gpt_url |
|
|
|
|
|
def create_url(self): |
|
|
|
now = datetime.now() |
|
date = format_date_time(mktime(now.timetuple())) |
|
|
|
|
|
signature_origin = "host: " + self.host + "\n" |
|
signature_origin += "date: " + date + "\n" |
|
signature_origin += "GET " + self.path + " HTTP/1.1" |
|
|
|
|
|
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'), digestmod=hashlib.sha256).digest() |
|
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8') |
|
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"' |
|
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8') |
|
|
|
|
|
v = { |
|
"authorization": authorization, |
|
"date": date, |
|
"host": self.host |
|
} |
|
|
|
url = self.gpt_url + '?' + urlencode(v) |
|
|
|
return url |
|
|
|
|
|
|
|
class SparkRequestInstance(): |
|
def __init__(self): |
|
XFYUN_APPID, XFYUN_API_SECRET, XFYUN_API_KEY = get_conf('XFYUN_APPID', 'XFYUN_API_SECRET', 'XFYUN_API_KEY') |
|
if XFYUN_APPID == '00000000' or XFYUN_APPID == '': raise RuntimeError('请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET') |
|
self.appid = XFYUN_APPID |
|
self.api_secret = XFYUN_API_SECRET |
|
self.api_key = XFYUN_API_KEY |
|
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat" |
|
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat" |
|
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat" |
|
self.gpt_url_v35 = "wss://spark-api.xf-yun.com/v3.5/chat" |
|
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image" |
|
|
|
self.time_to_yield_event = threading.Event() |
|
self.time_to_exit_event = threading.Event() |
|
|
|
self.result_buf = "" |
|
|
|
def generate(self, inputs, llm_kwargs, history, system_prompt, use_image_api=False): |
|
llm_kwargs = llm_kwargs |
|
history = history |
|
system_prompt = system_prompt |
|
import _thread as thread |
|
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt, use_image_api)) |
|
while True: |
|
self.time_to_yield_event.wait(timeout=1) |
|
if self.time_to_yield_event.is_set(): |
|
yield self.result_buf |
|
if self.time_to_exit_event.is_set(): |
|
return self.result_buf |
|
|
|
|
|
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt, use_image_api): |
|
if llm_kwargs['llm_model'] == 'sparkv2': |
|
gpt_url = self.gpt_url_v2 |
|
elif llm_kwargs['llm_model'] == 'sparkv3': |
|
gpt_url = self.gpt_url_v3 |
|
elif llm_kwargs['llm_model'] == 'sparkv3.5': |
|
gpt_url = self.gpt_url_v35 |
|
else: |
|
gpt_url = self.gpt_url |
|
file_manifest = [] |
|
if use_image_api and llm_kwargs.get('most_recent_uploaded'): |
|
if llm_kwargs['most_recent_uploaded'].get('path'): |
|
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path']) |
|
if len(file_manifest) > 0: |
|
print('正在使用讯飞图片理解API') |
|
gpt_url = self.gpt_url_img |
|
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url) |
|
websocket.enableTrace(False) |
|
wsUrl = wsParam.create_url() |
|
|
|
|
|
def on_open(ws): |
|
import _thread as thread |
|
thread.start_new_thread(run, (ws,)) |
|
def run(ws, *args): |
|
data = json.dumps(gen_params(ws.appid, *ws.all_args, file_manifest)) |
|
ws.send(data) |
|
|
|
|
|
def on_message(ws, message): |
|
data = json.loads(message) |
|
code = data['header']['code'] |
|
if code != 0: |
|
print(f'请求错误: {code}, {data}') |
|
self.result_buf += str(data) |
|
ws.close() |
|
self.time_to_exit_event.set() |
|
else: |
|
choices = data["payload"]["choices"] |
|
status = choices["status"] |
|
content = choices["text"][0]["content"] |
|
ws.content += content |
|
self.result_buf += content |
|
if status == 2: |
|
ws.close() |
|
self.time_to_exit_event.set() |
|
self.time_to_yield_event.set() |
|
|
|
|
|
def on_error(ws, error): |
|
print("error:", error) |
|
self.time_to_exit_event.set() |
|
|
|
|
|
def on_close(ws, *args): |
|
self.time_to_exit_event.set() |
|
|
|
|
|
ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open) |
|
ws.appid = self.appid |
|
ws.content = "" |
|
ws.all_args = (inputs, llm_kwargs, history, system_prompt) |
|
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE}) |
|
|
|
def generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest): |
|
conversation_cnt = len(history) // 2 |
|
messages = [] |
|
if file_manifest: |
|
base64_images = [] |
|
for image_path in file_manifest: |
|
base64_images.append(encode_image(image_path)) |
|
for img_s in base64_images: |
|
if img_s not in str(messages): |
|
messages.append({"role": "user", "content": img_s, "content_type": "image"}) |
|
else: |
|
messages = [{"role": "system", "content": system_prompt}] |
|
if conversation_cnt: |
|
for index in range(0, 2*conversation_cnt, 2): |
|
what_i_have_asked = {} |
|
what_i_have_asked["role"] = "user" |
|
what_i_have_asked["content"] = history[index] |
|
what_gpt_answer = {} |
|
what_gpt_answer["role"] = "assistant" |
|
what_gpt_answer["content"] = history[index+1] |
|
if what_i_have_asked["content"] != "": |
|
if what_gpt_answer["content"] == "": continue |
|
if what_gpt_answer["content"] == timeout_bot_msg: continue |
|
messages.append(what_i_have_asked) |
|
messages.append(what_gpt_answer) |
|
else: |
|
messages[-1]['content'] = what_gpt_answer['content'] |
|
what_i_ask_now = {} |
|
what_i_ask_now["role"] = "user" |
|
what_i_ask_now["content"] = inputs |
|
messages.append(what_i_ask_now) |
|
return messages |
|
|
|
|
|
def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest): |
|
""" |
|
通过appid和用户的提问来生成请参数 |
|
""" |
|
domains = { |
|
"spark": "general", |
|
"sparkv2": "generalv2", |
|
"sparkv3": "generalv3", |
|
"sparkv3.5": "generalv3.5", |
|
} |
|
domains_select = domains[llm_kwargs['llm_model']] |
|
if file_manifest: domains_select = 'image' |
|
data = { |
|
"header": { |
|
"app_id": appid, |
|
"uid": "1234" |
|
}, |
|
"parameter": { |
|
"chat": { |
|
"domain": domains_select, |
|
"temperature": llm_kwargs["temperature"], |
|
"random_threshold": 0.5, |
|
"max_tokens": 4096, |
|
"auditing": "default" |
|
} |
|
}, |
|
"payload": { |
|
"message": { |
|
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest) |
|
} |
|
} |
|
} |
|
return data |
|
|
|
|