|
from toolbox import update_ui, get_conf, trimmed_format_exc, get_max_token, Singleton |
|
import threading |
|
import os |
|
import logging |
|
|
|
def input_clipping(inputs, history, max_token_limit): |
|
import numpy as np |
|
from request_llms.bridge_all import model_info |
|
enc = model_info["gpt-3.5-turbo"]['tokenizer'] |
|
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=())) |
|
|
|
mode = 'input-and-history' |
|
|
|
input_token_num = get_token_num(inputs) |
|
if input_token_num < max_token_limit//2: |
|
mode = 'only-history' |
|
max_token_limit = max_token_limit - input_token_num |
|
|
|
everything = [inputs] if mode == 'input-and-history' else [''] |
|
everything.extend(history) |
|
n_token = get_token_num('\n'.join(everything)) |
|
everything_token = [get_token_num(e) for e in everything] |
|
delta = max(everything_token) // 16 |
|
|
|
while n_token > max_token_limit: |
|
where = np.argmax(everything_token) |
|
encoded = enc.encode(everything[where], disallowed_special=()) |
|
clipped_encoded = encoded[:len(encoded)-delta] |
|
everything[where] = enc.decode(clipped_encoded)[:-1] |
|
everything_token[where] = get_token_num(everything[where]) |
|
n_token = get_token_num('\n'.join(everything)) |
|
|
|
if mode == 'input-and-history': |
|
inputs = everything[0] |
|
else: |
|
pass |
|
history = everything[1:] |
|
return inputs, history |
|
|
|
def request_gpt_model_in_new_thread_with_ui_alive( |
|
inputs, inputs_show_user, llm_kwargs, |
|
chatbot, history, sys_prompt, refresh_interval=0.2, |
|
handle_token_exceed=True, |
|
retry_times_at_unknown_error=2, |
|
): |
|
""" |
|
Request GPT model,请求GPT模型同时维持用户界面活跃。 |
|
|
|
输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行): |
|
inputs (string): List of inputs (输入) |
|
inputs_show_user (string): List of inputs to show user(展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性) |
|
top_p (float): Top p value for sampling from model distribution (GPT参数,浮点数) |
|
temperature (float): Temperature value for sampling from model distribution(GPT参数,浮点数) |
|
chatbot: chatbot inputs and outputs (用户界面对话窗口句柄,用于数据流可视化) |
|
history (list): List of chat history (历史,对话历史列表) |
|
sys_prompt (string): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样) |
|
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果) |
|
handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启 |
|
retry_times_at_unknown_error:失败时的重试次数 |
|
|
|
输出 Returns: |
|
future: 输出,GPT返回的结果 |
|
""" |
|
import time |
|
from concurrent.futures import ThreadPoolExecutor |
|
from request_llms.bridge_all import predict_no_ui_long_connection |
|
|
|
chatbot.append([inputs_show_user, ""]) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
executor = ThreadPoolExecutor(max_workers=16) |
|
mutable = ["", time.time(), ""] |
|
|
|
watch_dog_patience = 5 |
|
|
|
def _req_gpt(inputs, history, sys_prompt): |
|
retry_op = retry_times_at_unknown_error |
|
exceeded_cnt = 0 |
|
while True: |
|
|
|
if len(mutable) >= 2 and (time.time()-mutable[1]) > watch_dog_patience: |
|
raise RuntimeError("检测到程序终止。") |
|
try: |
|
|
|
result = predict_no_ui_long_connection( |
|
inputs=inputs, llm_kwargs=llm_kwargs, |
|
history=history, sys_prompt=sys_prompt, observe_window=mutable) |
|
return result |
|
except ConnectionAbortedError as token_exceeded_error: |
|
|
|
if handle_token_exceed: |
|
exceeded_cnt += 1 |
|
|
|
from toolbox import get_reduce_token_percent |
|
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) |
|
MAX_TOKEN = get_max_token(llm_kwargs) |
|
EXCEED_ALLO = 512 + 512 * exceeded_cnt |
|
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO) |
|
mutable[0] += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n' |
|
continue |
|
else: |
|
|
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" |
|
return mutable[0] |
|
except: |
|
|
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
print(tb_str) |
|
mutable[0] += f"[Local Message] 警告,在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" |
|
if retry_op > 0: |
|
retry_op -= 1 |
|
mutable[0] += f"[Local Message] 重试中,请稍等 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}:\n\n" |
|
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): |
|
time.sleep(30) |
|
time.sleep(5) |
|
continue |
|
else: |
|
time.sleep(5) |
|
return mutable[0] |
|
|
|
|
|
future = executor.submit(_req_gpt, inputs, history, sys_prompt) |
|
while True: |
|
|
|
time.sleep(refresh_interval) |
|
|
|
mutable[1] = time.time() |
|
if future.done(): |
|
break |
|
chatbot[-1] = [chatbot[-1][0], mutable[0]] |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
|
|
final_result = future.result() |
|
chatbot[-1] = [chatbot[-1][0], final_result] |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
return final_result |
|
|
|
def can_multi_process(llm): |
|
if llm.startswith('gpt-'): return True |
|
if llm.startswith('api2d-'): return True |
|
if llm.startswith('azure-'): return True |
|
if llm.startswith('spark'): return True |
|
if llm.startswith('zhipuai') or llm.startswith('glm-'): return True |
|
return False |
|
|
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency( |
|
inputs_array, inputs_show_user_array, llm_kwargs, |
|
chatbot, history_array, sys_prompt_array, |
|
refresh_interval=0.2, max_workers=-1, scroller_max_len=30, |
|
handle_token_exceed=True, show_user_at_complete=False, |
|
retry_times_at_unknown_error=2, |
|
): |
|
""" |
|
Request GPT model using multiple threads with UI and high efficiency |
|
请求GPT模型的[多线程]版。 |
|
具备以下功能: |
|
实时在UI上反馈远程数据流 |
|
使用线程池,可调节线程池的大小避免openai的流量限制错误 |
|
处理中途中止的情况 |
|
网络等出问题时,会把traceback和已经接收的数据转入输出 |
|
|
|
输入参数 Args (以_array结尾的输入变量都是列表,列表长度为子任务的数量,执行时,会把列表拆解,放到每个子线程中分别执行): |
|
inputs_array (list): List of inputs (每个子任务的输入) |
|
inputs_show_user_array (list): List of inputs to show user(每个子任务展现在报告中的输入,借助此参数,在汇总报告中隐藏啰嗦的真实输入,增强报告的可读性) |
|
llm_kwargs: llm_kwargs参数 |
|
chatbot: chatbot (用户界面对话窗口句柄,用于数据流可视化) |
|
history_array (list): List of chat history (历史对话输入,双层列表,第一层列表是子任务分解,第二层列表是对话历史) |
|
sys_prompt_array (list): List of system prompts (系统输入,列表,用于输入给GPT的前提提示,比如你是翻译官怎样怎样) |
|
refresh_interval (float, optional): Refresh interval for UI (default: 0.2) (刷新时间间隔频率,建议低于1,不可高于3,仅仅服务于视觉效果) |
|
max_workers (int, optional): Maximum number of threads (default: see config.py) (最大线程数,如果子任务非常多,需要用此选项防止高频地请求openai导致错误) |
|
scroller_max_len (int, optional): Maximum length for scroller (default: 30)(数据流的显示最后收到的多少个字符,仅仅服务于视觉效果) |
|
handle_token_exceed (bool, optional): (是否在输入过长时,自动缩减文本) |
|
handle_token_exceed:是否自动处理token溢出的情况,如果选择自动处理,则会在溢出时暴力截断,默认开启 |
|
show_user_at_complete (bool, optional): (在结束时,把完整输入-输出结果显示在聊天框) |
|
retry_times_at_unknown_error:子任务失败时的重试次数 |
|
|
|
输出 Returns: |
|
list: List of GPT model responses (每个子任务的输出汇总,如果某个子任务出错,response中会携带traceback报错信息,方便调试和定位问题。) |
|
""" |
|
import time, random |
|
from concurrent.futures import ThreadPoolExecutor |
|
from request_llms.bridge_all import predict_no_ui_long_connection |
|
assert len(inputs_array) == len(history_array) |
|
assert len(inputs_array) == len(sys_prompt_array) |
|
if max_workers == -1: |
|
try: max_workers = get_conf('DEFAULT_WORKER_NUM') |
|
except: max_workers = 8 |
|
if max_workers <= 0: max_workers = 3 |
|
|
|
if not can_multi_process(llm_kwargs['llm_model']): |
|
max_workers = 1 |
|
|
|
executor = ThreadPoolExecutor(max_workers=max_workers) |
|
n_frag = len(inputs_array) |
|
|
|
chatbot.append(["请开始多线程操作。", ""]) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
|
|
mutable = [["", time.time(), "等待中"] for _ in range(n_frag)] |
|
|
|
|
|
watch_dog_patience = 5 |
|
|
|
|
|
def _req_gpt(index, inputs, history, sys_prompt): |
|
gpt_say = "" |
|
retry_op = retry_times_at_unknown_error |
|
exceeded_cnt = 0 |
|
mutable[index][2] = "执行中" |
|
detect_timeout = lambda: len(mutable[index]) >= 2 and (time.time()-mutable[index][1]) > watch_dog_patience |
|
while True: |
|
|
|
if detect_timeout(): raise RuntimeError("检测到程序终止。") |
|
try: |
|
|
|
gpt_say = predict_no_ui_long_connection( |
|
inputs=inputs, llm_kwargs=llm_kwargs, history=history, |
|
sys_prompt=sys_prompt, observe_window=mutable[index], console_slience=True |
|
) |
|
mutable[index][2] = "已成功" |
|
return gpt_say |
|
except ConnectionAbortedError as token_exceeded_error: |
|
|
|
if handle_token_exceed: |
|
exceeded_cnt += 1 |
|
|
|
from toolbox import get_reduce_token_percent |
|
p_ratio, n_exceed = get_reduce_token_percent(str(token_exceeded_error)) |
|
MAX_TOKEN = get_max_token(llm_kwargs) |
|
EXCEED_ALLO = 512 + 512 * exceeded_cnt |
|
inputs, history = input_clipping(inputs, history, max_token_limit=MAX_TOKEN-EXCEED_ALLO) |
|
gpt_say += f'[Local Message] 警告,文本过长将进行截断,Token溢出数:{n_exceed}。\n\n' |
|
mutable[index][2] = f"截断重试" |
|
continue |
|
else: |
|
|
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" |
|
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] |
|
mutable[index][2] = "输入过长已放弃" |
|
return gpt_say |
|
except: |
|
|
|
if detect_timeout(): raise RuntimeError("检测到程序终止。") |
|
tb_str = '```\n' + trimmed_format_exc() + '```' |
|
print(tb_str) |
|
gpt_say += f"[Local Message] 警告,线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n" |
|
if len(mutable[index][0]) > 0: gpt_say += "此线程失败前收到的回答:\n\n" + mutable[index][0] |
|
if retry_op > 0: |
|
retry_op -= 1 |
|
wait = random.randint(5, 20) |
|
if ("Rate limit reached" in tb_str) or ("Too Many Requests" in tb_str): |
|
wait = wait * 3 |
|
fail_info = "OpenAI绑定信用卡可解除频率限制 " |
|
else: |
|
fail_info = "" |
|
|
|
for i in range(wait): |
|
mutable[index][2] = f"{fail_info}等待重试 {wait-i}"; time.sleep(1) |
|
|
|
if detect_timeout(): raise RuntimeError("检测到程序终止。") |
|
mutable[index][2] = f"重试中 {retry_times_at_unknown_error-retry_op}/{retry_times_at_unknown_error}" |
|
continue |
|
else: |
|
mutable[index][2] = "已失败" |
|
wait = 5 |
|
time.sleep(5) |
|
return gpt_say |
|
|
|
|
|
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip( |
|
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)] |
|
cnt = 0 |
|
while True: |
|
|
|
time.sleep(refresh_interval) |
|
cnt += 1 |
|
worker_done = [h.done() for h in futures] |
|
|
|
observe_win = [] |
|
|
|
for thread_index, _ in enumerate(worker_done): |
|
mutable[thread_index][1] = time.time() |
|
|
|
for thread_index, _ in enumerate(worker_done): |
|
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\ |
|
replace('\n', '').replace('`', '.').replace(' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]" |
|
observe_win.append(print_something_really_funny) |
|
|
|
stat_str = ''.join([f'`{mutable[thread_index][2]}`: {obs}\n\n' |
|
if not done else f'`{mutable[thread_index][2]}`\n\n' |
|
for thread_index, done, obs in zip(range(len(worker_done)), worker_done, observe_win)]) |
|
|
|
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))] |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
if all(worker_done): |
|
executor.shutdown() |
|
break |
|
|
|
|
|
gpt_response_collection = [] |
|
for inputs_show_user, f in zip(inputs_show_user_array, futures): |
|
gpt_res = f.result() |
|
gpt_response_collection.extend([inputs_show_user, gpt_res]) |
|
|
|
|
|
if show_user_at_complete: |
|
for inputs_show_user, f in zip(inputs_show_user_array, futures): |
|
gpt_res = f.result() |
|
chatbot.append([inputs_show_user, gpt_res]) |
|
yield from update_ui(chatbot=chatbot, history=[]) |
|
time.sleep(0.5) |
|
return gpt_response_collection |
|
|
|
|
|
|
|
def read_and_clean_pdf_text(fp): |
|
""" |
|
这个函数用于分割pdf,用了很多trick,逻辑较乱,效果奇好 |
|
|
|
**输入参数说明** |
|
- `fp`:需要读取和清理文本的pdf文件路径 |
|
|
|
**输出参数说明** |
|
- `meta_txt`:清理后的文本内容字符串 |
|
- `page_one_meta`:第一页清理后的文本内容列表 |
|
|
|
**函数功能** |
|
读取pdf文件并清理其中的文本内容,清理规则包括: |
|
- 提取所有块元的文本信息,并合并为一个字符串 |
|
- 去除短块(字符数小于100)并替换为回车符 |
|
- 清理多余的空行 |
|
- 合并小写字母开头的段落块并替换为空格 |
|
- 清除重复的换行 |
|
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔 |
|
""" |
|
import fitz, copy |
|
import re |
|
import numpy as np |
|
from colorful import print亮黄, print亮绿 |
|
fc = 0 |
|
fs = 1 |
|
fb = 2 |
|
REMOVE_FOOT_NOTE = True |
|
REMOVE_FOOT_FFSIZE_PERCENT = 0.95 |
|
def primary_ffsize(l): |
|
""" |
|
提取文本块主字体 |
|
""" |
|
fsize_statiscs = {} |
|
for wtf in l['spans']: |
|
if wtf['size'] not in fsize_statiscs: fsize_statiscs[wtf['size']] = 0 |
|
fsize_statiscs[wtf['size']] += len(wtf['text']) |
|
return max(fsize_statiscs, key=fsize_statiscs.get) |
|
|
|
def ffsize_same(a,b): |
|
""" |
|
提取字体大小是否近似相等 |
|
""" |
|
return abs((a-b)/max(a,b)) < 0.02 |
|
|
|
with fitz.open(fp) as doc: |
|
meta_txt = [] |
|
meta_font = [] |
|
|
|
meta_line = [] |
|
meta_span = [] |
|
|
|
for index, page in enumerate(doc): |
|
|
|
text_areas = page.get_text("dict") |
|
for t in text_areas['blocks']: |
|
if 'lines' in t: |
|
pf = 998 |
|
for l in t['lines']: |
|
txt_line = "".join([wtf['text'] for wtf in l['spans']]) |
|
if len(txt_line) == 0: continue |
|
pf = primary_ffsize(l) |
|
meta_line.append([txt_line, pf, l['bbox'], l]) |
|
for wtf in l['spans']: |
|
meta_span.append([wtf['text'], wtf['size'], len(wtf['text'])]) |
|
|
|
|
|
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( |
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t]) |
|
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']]) |
|
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t]) |
|
if index == 0: |
|
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace( |
|
'- ', '') for t in text_areas['blocks'] if 'lines' in t] |
|
|
|
|
|
try: |
|
fsize_statiscs = {} |
|
for span in meta_span: |
|
if span[1] not in fsize_statiscs: fsize_statiscs[span[1]] = 0 |
|
fsize_statiscs[span[1]] += span[2] |
|
main_fsize = max(fsize_statiscs, key=fsize_statiscs.get) |
|
if REMOVE_FOOT_NOTE: |
|
give_up_fize_threshold = main_fsize * REMOVE_FOOT_FFSIZE_PERCENT |
|
except: |
|
raise RuntimeError(f'抱歉, 我们暂时无法解析此PDF文档: {fp}。') |
|
|
|
mega_sec = [] |
|
sec = [] |
|
for index, line in enumerate(meta_line): |
|
if index == 0: |
|
sec.append(line[fc]) |
|
continue |
|
if REMOVE_FOOT_NOTE: |
|
if meta_line[index][fs] <= give_up_fize_threshold: |
|
continue |
|
if ffsize_same(meta_line[index][fs], meta_line[index-1][fs]): |
|
|
|
if meta_line[index][fc].endswith('.') and\ |
|
(meta_line[index-1][fc] != 'NEW_BLOCK') and \ |
|
(meta_line[index][fb][2] - meta_line[index][fb][0]) < (meta_line[index-1][fb][2] - meta_line[index-1][fb][0]) * 0.7: |
|
sec[-1] += line[fc] |
|
sec[-1] += "\n\n" |
|
else: |
|
sec[-1] += " " |
|
sec[-1] += line[fc] |
|
else: |
|
if (index+1 < len(meta_line)) and \ |
|
meta_line[index][fs] > main_fsize: |
|
|
|
mega_sec.append(copy.deepcopy(sec)) |
|
sec = [] |
|
sec.append("# " + line[fc]) |
|
else: |
|
|
|
if meta_line[index-1][fs] > meta_line[index][fs]: |
|
sec.append("\n" + line[fc]) |
|
else: |
|
sec.append(line[fc]) |
|
mega_sec.append(copy.deepcopy(sec)) |
|
|
|
finals = [] |
|
for ms in mega_sec: |
|
final = " ".join(ms) |
|
final = final.replace('- ', ' ') |
|
finals.append(final) |
|
meta_txt = finals |
|
|
|
|
|
def 把字符太少的块清除为回车(meta_txt): |
|
for index, block_txt in enumerate(meta_txt): |
|
if len(block_txt) < 100: |
|
meta_txt[index] = '\n' |
|
return meta_txt |
|
meta_txt = 把字符太少的块清除为回车(meta_txt) |
|
|
|
def 清理多余的空行(meta_txt): |
|
for index in reversed(range(1, len(meta_txt))): |
|
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': |
|
meta_txt.pop(index) |
|
return meta_txt |
|
meta_txt = 清理多余的空行(meta_txt) |
|
|
|
def 合并小写开头的段落块(meta_txt): |
|
def starts_with_lowercase_word(s): |
|
pattern = r"^[a-z]+" |
|
match = re.match(pattern, s) |
|
if match: |
|
return True |
|
else: |
|
return False |
|
|
|
if starts_with_lowercase_word(meta_txt[0]): |
|
meta_txt[0] = meta_txt[0].capitalize() |
|
for _ in range(100): |
|
for index, block_txt in enumerate(meta_txt): |
|
if starts_with_lowercase_word(block_txt): |
|
if meta_txt[index-1] != '\n': |
|
meta_txt[index-1] += ' ' |
|
else: |
|
meta_txt[index-1] = '' |
|
meta_txt[index-1] += meta_txt[index] |
|
meta_txt[index] = '\n' |
|
return meta_txt |
|
meta_txt = 合并小写开头的段落块(meta_txt) |
|
meta_txt = 清理多余的空行(meta_txt) |
|
|
|
meta_txt = '\n'.join(meta_txt) |
|
|
|
for _ in range(5): |
|
meta_txt = meta_txt.replace('\n\n', '\n') |
|
|
|
|
|
meta_txt = meta_txt.replace('\n', '\n\n') |
|
|
|
|
|
|
|
|
|
|
|
|
|
return meta_txt, page_one_meta |
|
|
|
|
|
def get_files_from_everything(txt, type): |
|
""" |
|
这个函数是用来获取指定目录下所有指定类型(如.md)的文件,并且对于网络上的文件,也可以获取它。 |
|
下面是对每个参数和返回值的说明: |
|
参数 |
|
- txt: 路径或网址,表示要搜索的文件或者文件夹路径或网络上的文件。 |
|
- type: 字符串,表示要搜索的文件类型。默认是.md。 |
|
返回值 |
|
- success: 布尔值,表示函数是否成功执行。 |
|
- file_manifest: 文件路径列表,里面包含以指定类型为后缀名的所有文件的绝对路径。 |
|
- project_folder: 字符串,表示文件所在的文件夹路径。如果是网络上的文件,就是临时文件夹的路径。 |
|
该函数详细注释已添加,请确认是否满足您的需要。 |
|
""" |
|
import glob, os |
|
|
|
success = True |
|
if txt.startswith('http'): |
|
|
|
import requests |
|
from toolbox import get_conf |
|
from toolbox import get_log_folder, gen_time_str |
|
proxies = get_conf('proxies') |
|
try: |
|
r = requests.get(txt, proxies=proxies) |
|
except: |
|
raise ConnectionRefusedError(f"无法下载资源{txt},请检查。") |
|
path = os.path.join(get_log_folder(plugin_name='web_download'), gen_time_str()+type) |
|
with open(path, 'wb+') as f: f.write(r.content) |
|
project_folder = get_log_folder(plugin_name='web_download') |
|
file_manifest = [path] |
|
elif txt.endswith(type): |
|
|
|
file_manifest = [txt] |
|
project_folder = os.path.dirname(txt) |
|
elif os.path.exists(txt): |
|
|
|
project_folder = txt |
|
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*'+type, recursive=True)] |
|
if len(file_manifest) == 0: |
|
success = False |
|
else: |
|
project_folder = None |
|
file_manifest = [] |
|
success = False |
|
|
|
return success, file_manifest, project_folder |
|
|
|
|
|
|
|
@Singleton |
|
class nougat_interface(): |
|
def __init__(self): |
|
self.threadLock = threading.Lock() |
|
|
|
def nougat_with_timeout(self, command, cwd, timeout=3600): |
|
import subprocess |
|
from toolbox import ProxyNetworkActivate |
|
logging.info(f'正在执行命令 {command}') |
|
with ProxyNetworkActivate("Nougat_Download"): |
|
process = subprocess.Popen(command, shell=True, cwd=cwd, env=os.environ) |
|
try: |
|
stdout, stderr = process.communicate(timeout=timeout) |
|
except subprocess.TimeoutExpired: |
|
process.kill() |
|
stdout, stderr = process.communicate() |
|
print("Process timed out!") |
|
return False |
|
return True |
|
|
|
|
|
def NOUGAT_parse_pdf(self, fp, chatbot, history): |
|
from toolbox import update_ui_lastest_msg |
|
|
|
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在排队, 等待线程锁...", |
|
chatbot=chatbot, history=history, delay=0) |
|
self.threadLock.acquire() |
|
import glob, threading, os |
|
from toolbox import get_log_folder, gen_time_str |
|
dst = os.path.join(get_log_folder(plugin_name='nougat'), gen_time_str()) |
|
os.makedirs(dst) |
|
|
|
yield from update_ui_lastest_msg("正在解析论文, 请稍候。进度:正在加载NOUGAT... (提示:首次运行需要花费较长时间下载NOUGAT参数)", |
|
chatbot=chatbot, history=history, delay=0) |
|
self.nougat_with_timeout(f'nougat --out "{os.path.abspath(dst)}" "{os.path.abspath(fp)}"', os.getcwd(), timeout=3600) |
|
res = glob.glob(os.path.join(dst,'*.mmd')) |
|
if len(res) == 0: |
|
self.threadLock.release() |
|
raise RuntimeError("Nougat解析论文失败。") |
|
self.threadLock.release() |
|
return res[0] |
|
|
|
|
|
|
|
|
|
def try_install_deps(deps, reload_m=[]): |
|
import subprocess, sys, importlib |
|
for dep in deps: |
|
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--user', dep]) |
|
import site |
|
importlib.reload(site) |
|
for m in reload_m: |
|
importlib.reload(__import__(m)) |
|
|
|
|
|
def get_plugin_arg(plugin_kwargs, key, default): |
|
|
|
if (key in plugin_kwargs) and (plugin_kwargs[key] == ""): plugin_kwargs.pop(key) |
|
|
|
return plugin_kwargs.get(key, default) |
|
|