Spaces:
Running
Running
#!/usr/bin/env python | |
# -*- coding: utf-8 -*- | |
""" | |
@Time : 2023/5/6 14:13 | |
@Author : alexanderwu | |
@File : hello_world.py | |
""" | |
import asyncio | |
from metagpt.llm import LLM | |
from metagpt.logs import logger | |
async def ask_and_print(question: str, llm: LLM, system_prompt) -> str: | |
logger.info(f"Q: {question}") | |
rsp = await llm.aask(question, system_msgs=[system_prompt]) | |
logger.info(f"A: {rsp}") | |
return rsp | |
async def lowlevel_api_example(llm: LLM): | |
logger.info("low level api example") | |
logger.info(await llm.aask_batch(["hi", "write python hello world."])) | |
hello_msg = [{"role": "user", "content": "count from 1 to 10. split by newline."}] | |
logger.info(await llm.acompletion(hello_msg)) | |
logger.info(await llm.acompletion_text(hello_msg)) | |
# streaming mode, much slower | |
await llm.acompletion_text(hello_msg, stream=True) | |
# check completion if exist to test llm complete functions | |
if hasattr(llm, "completion"): | |
logger.info(llm.completion(hello_msg)) | |
async def main(): | |
llm = LLM() | |
await ask_and_print("what's your name?", llm, "I'm a helpful AI assistant.") | |
await ask_and_print("who are you?", llm, "just answer 'I am a robot' if the question is 'who are you'") | |
await lowlevel_api_example(llm) | |
if __name__ == "__main__": | |
asyncio.run(main()) | |