Warlord-K commited on
Commit
8ef84f4
·
1 Parent(s): 9185cf8

Create helpers.py

Browse files
Files changed (1) hide show
  1. helpers.py +85 -0
helpers.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ultralyticsplus import YOLO
2
+ from PIL import Image
3
+ import numpy as np
4
+ from tensorflow.keras.models import Model, Sequential
5
+ from tensorflow.keras.layers import (
6
+ Convolution2D,
7
+ LocallyConnected2D,
8
+ MaxPooling2D,
9
+ Flatten,
10
+ Dense,
11
+ Dropout,
12
+ )
13
+ import os
14
+ import zipfile
15
+ import gdown
16
+ import tensorflow as tf
17
+
18
+
19
+ def load_detector():
20
+ # load model
21
+ model = YOLO('https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-face.pt')
22
+
23
+ # set model parameters
24
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
25
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
26
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
27
+ model.overrides['max_det'] = 50 # maximum number of detections per image
28
+ return model
29
+
30
+ def extract_faces(model, image):
31
+ # perform inference
32
+ results = model.predict(image)
33
+ ids = np.array(results[0].boxes.xyxy).astype(np.int32)
34
+ img = Image.open(image)
35
+ crops = []
36
+ for id in ids:
37
+ crops.append(Image.fromarray(np.array(img)[id[1] : id[3], id[0]: id[2]]))
38
+ return crops
39
+
40
+ def load_model(
41
+ url="https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip",
42
+ ):
43
+ base_model = Sequential()
44
+ base_model.add(
45
+ Convolution2D(32, (11, 11), activation="relu", name="C1", input_shape=(152, 152, 3))
46
+ )
47
+ base_model.add(MaxPooling2D(pool_size=3, strides=2, padding="same", name="M2"))
48
+ base_model.add(Convolution2D(16, (9, 9), activation="relu", name="C3"))
49
+ base_model.add(LocallyConnected2D(16, (9, 9), activation="relu", name="L4"))
50
+ base_model.add(LocallyConnected2D(16, (7, 7), strides=2, activation="relu", name="L5"))
51
+ base_model.add(LocallyConnected2D(16, (5, 5), activation="relu", name="L6"))
52
+ base_model.add(Flatten(name="F0"))
53
+ base_model.add(Dense(4096, activation="relu", name="F7"))
54
+ base_model.add(Dropout(rate=0.5, name="D0"))
55
+ base_model.add(Dense(8631, activation="softmax", name="F8"))
56
+
57
+ # ---------------------------------
58
+
59
+ home = os.getcwd()
60
+
61
+ if os.path.isfile(home + "/VGGFace2_DeepFace_weights_val-0.9034.h5") != True:
62
+ print("VGGFace2_DeepFace_weights_val-0.9034.h5 will be downloaded...")
63
+
64
+ output = home + "/VGGFace2_DeepFace_weights_val-0.9034.h5.zip"
65
+
66
+ gdown.download(url, output, quiet=False)
67
+
68
+ # unzip VGGFace2_DeepFace_weights_val-0.9034.h5.zip
69
+ with zipfile.ZipFile(output, "r") as zip_ref:
70
+ zip_ref.extractall(home)
71
+
72
+ base_model.load_weights(home + "/VGGFace2_DeepFace_weights_val-0.9034.h5")
73
+
74
+ # drop F8 and D0. F7 is the representation layer.
75
+ deepface_model = Model(inputs=base_model.layers[0].input, outputs=base_model.layers[-3].output)
76
+
77
+ return deepface_model
78
+
79
+ def get_embeddings(model, imgs):
80
+ embeddings = []
81
+ for img in imgs:
82
+ img = np.expand_dims(np.array(img.resize((152,152))), axis = 0)
83
+ embedding = model.predict(img, verbose=0)[0]
84
+ embeddings.append(embedding)
85
+ return embeddings