File size: 11,548 Bytes
fa4e0d7
708d28a
fa4e0d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7238993
aec519c
7238993
fa4e0d7
 
 
 
d317940
fa4e0d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#Import libraries
#pip install pandas torch transformers datasets scikit-learn
import torch
#Set device
if torch.cuda.is_available():
    device = torch.device('cuda')  # CUDA GPU
elif torch.backends.mps.is_available():
    device = torch.device('mps') #Apple GPU
else:
    device = torch.device("cpu")
print('Using device:', device)
#Additional Info when using cuda
if device.type == 'cuda':
    print("Device name: ", torch.cuda.get_device_name(0))
    print("Device properties:", torch.cuda.get_device_properties(0))
    print('Memory Usage:')
    print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
    print('Cached:   ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')

#ncf_model.to(device)

#Load dataset
import pandas as pd
from datasets import load_dataset
import numpy as np
review_dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023","raw_review_All_Beauty",trust_remote_code=True)

# User Reviews dataframe (reviews are in the 'train' split)
reviews_df = pd.DataFrame(review_dataset['full'])
# Map user_id and parent_asin to indices
user_map = {user: idx for idx, user in enumerate(reviews_df["user_id"].unique())}
item_map = {asin: idx for idx, asin in enumerate(reviews_df["parent_asin"].unique())}

meta_dataset = load_dataset("McAuley-Lab/Amazon-Reviews-2023","raw_meta_All_Beauty")

# User Reviews dataframe (reviews are in the 'train' split)
meta_df = pd.DataFrame(meta_dataset['full'])
#Split data
from sklearn.model_selection import train_test_split
reviews_df["user_idx"] = reviews_df["user_id"].map(user_map)
reviews_df["item_idx"] = reviews_df["parent_asin"].map(item_map)

# Train-test split
train, test = train_test_split(reviews_df, test_size=0.2, random_state=42)
#NCF model
import torch
import torch.nn as nn
import torch.nn.functional as F

class NCF(nn.Module):
    def __init__(self, num_users, num_items, embedding_dim=32, hidden_dims=[64, 32], dropout_rate=0.5):
        super(NCF, self).__init__()
        # Embedding layers
        self.user_embedding = nn.Embedding(num_users, embedding_dim)
        self.item_embedding = nn.Embedding(num_items, embedding_dim)

        # Neural layers
        input_dim = embedding_dim * 2
        layers = []
        for hidden_dim in hidden_dims:
            layers.append(nn.Linear(input_dim, hidden_dim))
            layers.append(nn.ReLU())
            input_dim = hidden_dim
        self.mlp = nn.Sequential(*layers)

        # Final prediction layer
        self.output = nn.Linear(hidden_dims[-1], 1)
        self.dropout = nn.Dropout(p=dropout_rate)

    def forward(self, user_idx, item_idx):
        # Embeddings
        user_emb = self.user_embedding(user_idx)
        item_emb = self.item_embedding(item_idx)

        # Concatenate and pass through MLP
        x = torch.cat([user_emb, item_emb], dim=-1)
        x = self.mlp(x)

        x = self.dropout(x)

        # Prediction
        return torch.sigmoid(self.output(x))

#prepare dataloader
from torch.utils.data import Dataset, DataLoader

class ReviewsDataset(Dataset):
    def __init__(self, data):
        self.user_idx = data["user_idx"].values
        self.item_idx = data["item_idx"].values
        self.rating = data["rating"].values

    def __len__(self):
        return len(self.rating)

    def __getitem__(self, idx):
        return {
            "user_idx": torch.tensor(self.user_idx[idx], dtype=torch.long),
            "item_idx": torch.tensor(self.item_idx[idx], dtype=torch.long),
            "rating": torch.tensor(self.rating[idx], dtype=torch.float),
        }

# Create DataLoaders
train_dataset = ReviewsDataset(train)
test_dataset = ReviewsDataset(test)

train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False)

#train
results = {"train_loss": [],
            "train_acc": [],
            "test_loss": [],
            "test_acc": []
    }
def train_model(model, train_loader, test_loader, epochs=10, lr=0.001, lr_decay_step=5, lr_decay_gamma=0.1):
    model.to("cuda")  # Move model to GPU
    criterion = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=0.01)

    scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_decay_step, gamma=lr_decay_gamma)

    for epoch in range(epochs):
        model.train()
        train_loss = 0
        train_mae = 0
        for batch in train_loader:
            user_idx = batch["user_idx"].to("cuda")
            item_idx = batch["item_idx"].to("cuda")
            ratings = batch["rating"].to("cuda")

            optimizer.zero_grad()
            predictions = model(user_idx, item_idx).squeeze()
            loss = criterion(predictions, ratings / 5.0)  # Normalize ratings
            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            train_mae += torch.abs(predictions - (ratings / 5.0)).sum().item()

        avg_train_loss = train_loss / len(train_loader)
        avg_train_mae = train_mae / len(train_loader.dataset)

        print(f"Epoch {epoch+1}, Train Loss: {train_loss / len(train_loader):.4f}, Train MAE: {avg_train_mae:.4f}")
        results["train_loss"].append(train_loss / len(train_loader))
        results["train_acc"].append(avg_train_mae)

        scheduler.step()

        evaluate_model(model, test_loader)

def evaluate_model(model, test_loader):
    model.eval()
    test_loss = 0
    test_mae = 0
    with torch.no_grad():
        for batch in test_loader:
            user_idx = batch["user_idx"].to("cuda")
            item_idx = batch["item_idx"].to("cuda")
            ratings = batch["rating"].to("cuda")

            predictions = model(user_idx, item_idx).squeeze()
            loss = nn.MSELoss()(predictions, ratings / 5.0)

            test_loss += loss.item()
            test_mae += torch.abs(predictions - (ratings / 5.0)).sum().item()

        avg_test_loss = test_loss / len(test_loader)
        avg_test_mae = test_mae / len(test_loader.dataset)

    print(f"Test Loss: {test_loss / len(test_loader):.4f}, Test MAE: {avg_test_mae:.4f}")
    results["test_loss"].append(test_loss / len(test_loader))
    results["test_acc"].append(avg_test_mae)

num_users = len(user_map)
num_items = len(item_map)

# Initialize model
ncf_model = NCF(num_users=num_users, num_items=num_items, embedding_dim=32, hidden_dims=[64, 32])

# Train the model
train_model(ncf_model, train_loader, test_loader, epochs=10, lr=1e-4)

#Plot
import matplotlib.pyplot as plt
# Plot loss curves of a model
def plot_loss_curves(results):

    loss = results["train_loss"]
    test_loss = results["test_loss"]

    accuracy = results["train_acc"]
    test_accuracy = results["test_acc"]

    epochs = range(len(results["train_loss"]))

    plt.figure(figsize=(15, 7))

    # Plot loss
    plt.subplot(1, 2, 1)
    plt.plot(epochs, loss, label="train_loss")
    plt.plot(epochs, test_loss, label="test_loss")
    plt.title("Loss")
    plt.xlabel("Epochs")
    plt.legend()

    # Plot accuracy
    plt.subplot(1, 2, 2)
    plt.plot(epochs, accuracy, label="train_accuracy")
    plt.plot(epochs, test_accuracy, label="test_accuracy")
    plt.title("Accuracy")
    plt.xlabel("Epochs")
    plt.legend()
plot_loss_curves(results)
#Recommendations
# Example recommendation for a user
user_id = "AHZM3GVSTF4MCGO67QFLXCNIXSIQ"
user_index = user_map[user_id]
def recommend(model, user_idx, item_indices, k=10):
    model.eval()
    user_tensor = torch.tensor([user_idx] * len(item_indices)).to("cuda")
    item_tensor = torch.tensor(item_indices).to("cuda")

    with torch.no_grad():
        predictions = model(user_tensor, item_tensor).squeeze()
    top_k_items = torch.topk(predictions, k=k).indices.cpu().numpy()
    return [list(item_map.keys())[i] for i in top_k_items]


item_indices = list(range(len(item_map)))
recommendations = recommend(ncf_model, user_index, item_indices)
print("Recommended items:", recommendations)

# import matplotlib.pyplot as plt
# from PIL import Image
# import requests
# from io import BytesIO

# def fetch_item_images_from_df(asins, meta_df):
    
#     items_with_images = []
#     for asin in asins:
#         row = meta_df[meta_df["parent_asin"] == asin]
#         if not row.empty:
#             images = row["images"].iloc[0]
#             if images:  # Check if images are available
#               #print(images["large"][0])
#               items_with_images.append((asin, images["large"][0], row["title"]))
#     return items_with_images

# def display_items(title, items):
#     print(items)
    
#     plt.figure(figsize=(15, 5))
#     plt.suptitle(title, fontsize=16)

#     for idx, (asin, image_urls, title) in enumerate(items):
#         if image_urls:  # Only display if images are available
#             try:
#                 response = requests.get(image_urls)
#                 img = Image.open(BytesIO(response.content))

#                 plt.subplot(1, len(items), idx + 1)
#                 plt.imshow(img)
#                 plt.axis("off")
#                 plt.title(title)
#             except Exception as e:
#                 print(f"Could not fetch image for ASIN {asin}: {e}")

#     plt.tight_layout()
#     plt.show()


# # Fetch ASINs for bought items
# #user_id = "user_1"
# bought_asins = reviews_df[reviews_df["user_id"] == user_id]["asin"].tolist()

# # Fetch images for recommended items
# recommended_asins = recommend(ncf_model, user_index, list(range(len(item_map))))
# bought_items = fetch_item_images_from_df(bought_asins, meta_df)
# recommended_items = fetch_item_images_from_df(recommended_asins, meta_df)

# # Display images
# display_items("User Bought Items", bought_items)
# display_items("Recommended Items", recommended_items)

import gradio as gr
import torch
from PIL import Image
import requests
from io import BytesIO

# Function to fetch item images from the DataFrame
def fetch_item_images_from_df(asins, meta_df):
    items_with_images = []
    for asin in asins:
        row = meta_df[meta_df["parent_asin"] == asin]
        if not row.empty:
            images = row["images"].iloc[0]
            if images:  # Check if images are available
                items_with_images.append([images["large"][0], row["title"].iloc[0]])
    return items_with_images

# Function to recommend and fetch images for bought and recommended items
def recommend_and_display(user_id):
    user_index = user_map.get(user_id)
    if user_index is None:
        return [], []  # Return empty lists if user not found

    # Fetch ASINs for bought items
    bought_asins = reviews_df[reviews_df["user_id"] == user_id]["parent_asin"].tolist()

    # Fetch images for bought and recommended items
    bought_items = fetch_item_images_from_df(bought_asins, meta_df)
    recommended_asins = recommend(ncf_model, user_index, list(range(len(item_map))))
    recommended_items = fetch_item_images_from_df(recommended_asins, meta_df)

    return bought_items, recommended_items

# Gradio function to display the recommendations
def gradio_interface(user_id):
    bought, recommended = recommend_and_display(user_id)
    return bought, recommended

# Gradio Interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=gr.Textbox(label="Enter User ID"),
    outputs=[
        gr.Gallery(label="Bought Items"),
        gr.Gallery(label="Recommended Items")
    ],
    title="Amazon Recommender",
    description="Enter a User ID to see images of bought and recommended items.",
    live=True
)

# Launch Gradio Interface
interface.launch(share=True)