Spaces:
Runtime error
Runtime error
File size: 21,057 Bytes
e20ef71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
from __future__ import annotations
import json
import pathlib
import re
from typing import Tuple
from typing import Union, List
import numpy as np
import torch
from PIL import Image
from dateutil import parser as dateparser
from torchvision import transforms
from torchvision.ops import box_iou
from word2number import w2n
from vision_processes import forward
def load_json(path: str):
if isinstance(path, str):
path = pathlib.Path(path)
if path.suffix != '.json':
path = path.with_suffix('.json')
with open(path, 'r') as f:
data = json.load(f)
return data
class ImagePatch:
"""A Python class containing a crop of an image centered around a particular object, as well as relevant
information.
Attributes
----------
cropped_image : array_like
An array-like of the cropped image taken from the original image.
left : int
An int describing the position of the left border of the crop's bounding box in the original image.
lower : int
An int describing the position of the bottom border of the crop's bounding box in the original image.
right : int
An int describing the position of the right border of the crop's bounding box in the original image.
upper : int
An int describing the position of the top border of the crop's bounding box in the original image.
Methods
-------
find(object_name: str)->List[ImagePatch]
Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
image matching the object_name.
exists(object_name: str)->bool
Returns True if the object specified by object_name is found in the image, and False otherwise.
verify_property(property: str)->bool
Returns True if the property is met, and False otherwise.
best_text_match(option_list: List[str], prefix: str)->str
Returns the string that best matches the image.
simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
to "What is this?".
compute_depth()->float
Returns the median depth of the image crop.
crop(left: int, lower: int, right: int, upper: int)->ImagePatch
Returns a new ImagePatch object containing a crop of the image at the given coordinates.
"""
def __init__(self, image: Union[Image.Image, torch.Tensor, np.ndarray], left: int = None, lower: int = None,
right: int = None, upper: int = None, parent_left=0, parent_lower=0, queues=None,
parent_img_patch=None):
"""Initializes an ImagePatch object by cropping the image at the given coordinates and stores the coordinates as
attributes. If no coordinates are provided, the image is left unmodified, and the coordinates are set to the
dimensions of the image.
Parameters
-------
image : array_like
An array-like of the original image.
left : int
An int describing the position of the left border of the crop's bounding box in the original image.
lower : int
An int describing the position of the bottom border of the crop's bounding box in the original image.
right : int
An int describing the position of the right border of the crop's bounding box in the original image.
upper : int
An int describing the position of the top border of the crop's bounding box in the original image.
"""
if isinstance(image, Image.Image):
image = transforms.ToTensor()(image)
elif isinstance(image, np.ndarray):
image = torch.tensor(image).permute(1, 2, 0)
elif isinstance(image, torch.Tensor) and image.dtype == torch.uint8:
image = image / 255
if left is None and right is None and upper is None and lower is None:
self.cropped_image = image
self.left = 0
self.lower = 0
self.right = image.shape[2] # width
self.upper = image.shape[1] # height
else:
self.cropped_image = image[:, image.shape[1] - upper:image.shape[1] - lower, left:right]
self.left = left + parent_left
self.upper = upper + parent_lower
self.right = right + parent_left
self.lower = lower + parent_lower
self.height = self.cropped_image.shape[1]
self.width = self.cropped_image.shape[2]
self.cache = {}
self.queues = (None, None) if queues is None else queues
self.parent_img_patch = parent_img_patch
self.horizontal_center = (self.left + self.right) / 2
self.vertical_center = (self.lower + self.upper) / 2
if self.cropped_image.shape[1] == 0 or self.cropped_image.shape[2] == 0:
raise Exception("ImagePatch has no area")
self.possible_options = load_json('./useful_lists/possible_options.json')
def forward(self, model_name, *args, **kwargs):
return forward(model_name, *args, **kwargs)
# return forward(model_name, *args, queues=self.queues, **kwargs)
@property
def original_image(self):
if self.parent_img_patch is None:
return self.cropped_image
else:
return self.parent_img_patch.original_image
def find(self, object_name: str, confidence_threshold: float = None, return_confidence: bool = False) -> List:
"""Returns a list of ImagePatch objects matching object_name contained in the crop if any are found.
Otherwise, returns an empty list.
Parameters
----------
object_name : str
the name of the object to be found
Returns
-------
List[ImagePatch]
a list of ImagePatch objects matching object_name contained in the crop
"""
if confidence_threshold is not None:
confidence_threshold = float(confidence_threshold)
if object_name in ["object", "objects"]:
all_object_coordinates, all_object_scores = self.forward('maskrcnn', self.cropped_image,
confidence_threshold=confidence_threshold)
all_object_coordinates = all_object_coordinates[0]
all_object_scores = all_object_scores[0]
else:
if object_name == 'person':
object_name = 'people' # GLIP does better at people than person
all_object_coordinates, all_object_scores = self.forward('glip', self.cropped_image, object_name,
confidence_threshold=confidence_threshold)
if len(all_object_coordinates) == 0:
return []
threshold = 0.0
if threshold > 0:
area_im = self.width * self.height
all_areas = torch.tensor([(coord[2] - coord[0]) * (coord[3] - coord[1]) / area_im
for coord in all_object_coordinates])
mask = all_areas > threshold
# if not mask.any():
# mask = all_areas == all_areas.max() # At least return one element
all_object_coordinates = all_object_coordinates[mask]
all_object_scores = all_object_scores[mask]
boxes = [self.crop(*coordinates) for coordinates in all_object_coordinates]
if return_confidence:
return [(box, float(score)) for box, score in zip(boxes, all_object_scores.reshape(-1))]
else:
return boxes
def exists(self, object_name) -> bool:
"""Returns True if the object specified by object_name is found in the image, and False otherwise.
Parameters
-------
object_name : str
A string describing the name of the object to be found in the image.
"""
if object_name.isdigit() or object_name.lower().startswith("number"):
object_name = object_name.lower().replace("number", "").strip()
object_name = w2n.word_to_num(object_name)
answer = self.simple_query("What number is written in the image (in digits)?")
return w2n.word_to_num(answer) == object_name
patches = self.find(object_name)
filtered_patches = []
for patch in patches:
if "yes" in patch.simple_query(f"Is this a {object_name}?"):
filtered_patches.append(patch)
return len(filtered_patches) > 0
def _score(self, category: str, negative_categories=None, model='clip') -> float:
"""
Returns a binary score for the similarity between the image and the category.
The negative categories are used to compare to (score is relative to the scores of the negative categories).
"""
if model == 'clip':
res = self.forward('clip', self.cropped_image, category, task='score',
negative_categories=negative_categories)
elif model == 'tcl':
res = self.forward('tcl', self.cropped_image, category, task='score')
else: # xvlm
task = 'binary_score' if negative_categories is not None else 'score'
res = self.forward('xvlm', self.cropped_image, category, task=task, negative_categories=negative_categories)
res = res.item()
return res
def _detect(self, category: str, thresh, negative_categories=None, model='clip') -> Tuple[bool, float]:
score = self._score(category, negative_categories, model)
return score > thresh, float(score)
def verify_property(self, object_name: str, attribute: str, return_confidence: bool = False):
"""Returns True if the object possesses the property, and False otherwise.
Differs from 'exists' in that it presupposes the existence of the object specified by object_name, instead
checking whether the object possesses the property.
Parameters
-------
object_name : str
A string describing the name of the object to be found in the image.
attribute : str
A string describing the property to be checked.
"""
name = f"{attribute} {object_name}"
model = "xvlm"
negative_categories = [f"{att} {object_name}" for att in self.possible_options['attributes']]
# if model == 'clip':
# ret, score = self._detect(name, negative_categories=negative_categories,
# thresh=config.verify_property.thresh_clip, model='clip')
# elif model == 'tcl':
# ret, score = self._detect(name, thresh=config.verify_property.thresh_tcl, model='tcl')
# else: # 'xvlm'
ret, score = self._detect(name, negative_categories=negative_categories, thresh=0.6, model='xvlm')
if return_confidence:
return ret, score
else:
return ret
def best_text_match(self, option_list: list[str] = None, prefix: str = None) -> str:
"""Returns the string that best matches the image.
Parameters
-------
option_list : str
A list with the names of the different options
prefix : str
A string with the prefixes to append to the options
"""
option_list_to_use = option_list
if prefix is not None:
option_list_to_use = [prefix + " " + option for option in option_list]
model_name = "xvlm"
image = self.cropped_image
text = option_list_to_use
if model_name in ('clip', 'tcl'):
selected = self.forward(model_name, image, text, task='classify')
elif model_name == 'xvlm':
res = self.forward(model_name, image, text, task='score')
res = res.argmax().item()
selected = res
else:
raise NotImplementedError
return option_list[selected]
def simple_query(self, question: str, return_confidence: bool = False):
"""Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
to "What is this?". The questions are about basic perception, and are not meant to be used for complex reasoning
or external knowledge.
Parameters
-------
question : str
A string describing the question to be asked.
"""
text, score = self.forward('blip', self.cropped_image, question, task='qa')
if return_confidence:
return text, score
else:
return text
def compute_depth(self):
"""Returns the median depth of the image crop
Parameters
----------
Returns
-------
float
the median depth of the image crop
"""
original_image = self.original_image
depth_map = self.forward('depth', original_image)
depth_map = depth_map[original_image.shape[1] - self.upper:original_image.shape[1] - self.lower,
self.left:self.right]
return depth_map.median() # Ideally some kind of mode, but median is good enough for now
def crop(self, left: int, lower: int, right: int, upper: int) -> ImagePatch:
"""Returns a new ImagePatch containing a crop of the original image at the given coordinates.
Parameters
----------
left : int
the position of the left border of the crop's bounding box in the original image
lower : int
the position of the bottom border of the crop's bounding box in the original image
right : int
the position of the right border of the crop's bounding box in the original image
upper : int
the position of the top border of the crop's bounding box in the original image
Returns
-------
ImagePatch
a new ImagePatch containing a crop of the original image at the given coordinates
"""
# make all inputs ints
left = int(left)
lower = int(lower)
right = int(right)
upper = int(upper)
if True:
left = max(0, left - 10)
lower = max(0, lower - 10)
right = min(self.width, right + 10)
upper = min(self.height, upper + 10)
return ImagePatch(self.cropped_image, left, lower, right, upper, self.left, self.lower, queues=self.queues,
parent_img_patch=self)
def overlaps_with(self, left, lower, right, upper):
"""Returns True if a crop with the given coordinates overlaps with this one,
else False.
Parameters
----------
left : int
the left border of the crop to be checked
lower : int
the lower border of the crop to be checked
right : int
the right border of the crop to be checked
upper : int
the upper border of the crop to be checked
Returns
-------
bool
True if a crop with the given coordinates overlaps with this one, else False
"""
return self.left <= right and self.right >= left and self.lower <= upper and self.upper >= lower
def llm_query(self, question: str, long_answer: bool = True) -> str:
return llm_query(question, None, long_answer)
# def print_image(self, size: tuple[int, int] = None):
# show_single_image(self.cropped_image, size)
def __repr__(self):
return "ImagePatch(left={}, right={}, upper={}, lower={}, height={}, width={}, horizontal_center={}, vertical_center={})".format(
self.left, self.right, self.upper, self.lower, self.height, self.width,
self.horizontal_center, self.vertical_center,
)
# return "ImagePatch({}, {}, {}, {})".format(self.left, self.lower, self.right, self.upper)
def best_image_match(list_patches: list[ImagePatch], content: List[str], return_index: bool = False) -> \
Union[ImagePatch, None]:
"""Returns the patch most likely to contain the content.
Parameters
----------
list_patches : List[ImagePatch]
content : List[str]
the object of interest
return_index : bool
if True, returns the index of the patch most likely to contain the object
Returns
-------
int
Patch most likely to contain the object
"""
if len(list_patches) == 0:
return None
model = "xvlm"
scores = []
for cont in content:
if model == 'clip':
res = list_patches[0].forward(model, [p.cropped_image for p in list_patches], cont, task='compare',
return_scores=True)
else:
res = list_patches[0].forward(model, [p.cropped_image for p in list_patches], cont, task='score')
scores.append(res)
scores = torch.stack(scores).mean(dim=0)
scores = scores.argmax().item() # Argmax over all image patches
if return_index:
return scores
return list_patches[scores]
def distance(patch_a: Union[ImagePatch, float], patch_b: Union[ImagePatch, float]) -> float:
"""
Returns the distance between the edges of two ImagePatches, or between two floats.
If the patches overlap, it returns a negative distance corresponding to the negative intersection over union.
"""
if isinstance(patch_a, ImagePatch) and isinstance(patch_b, ImagePatch):
a_min = np.array([patch_a.left, patch_a.lower])
a_max = np.array([patch_a.right, patch_a.upper])
b_min = np.array([patch_b.left, patch_b.lower])
b_max = np.array([patch_b.right, patch_b.upper])
u = np.maximum(0, a_min - b_max)
v = np.maximum(0, b_min - a_max)
dist = np.sqrt((u ** 2).sum() + (v ** 2).sum())
if dist == 0:
box_a = torch.tensor([patch_a.left, patch_a.lower, patch_a.right, patch_a.upper])[None]
box_b = torch.tensor([patch_b.left, patch_b.lower, patch_b.right, patch_b.upper])[None]
dist = - box_iou(box_a, box_b).item()
else:
dist = abs(patch_a - patch_b)
return dist
def bool_to_yesno(bool_answer: bool) -> str:
"""Returns a yes/no answer to a question based on the boolean value of bool_answer.
Parameters
----------
bool_answer : bool
a boolean value
Returns
-------
str
a yes/no answer to a question based on the boolean value of bool_answer
"""
return "yes" if bool_answer else "no"
def llm_query(query, context=None, long_answer=True, queues=None):
"""Answers a text question using GPT-3. The input question is always a formatted string with a variable in it.
Parameters
----------
query: str
the text question to ask. Must not contain any reference to 'the image' or 'the photo', etc.
"""
if long_answer:
return forward(model_name='gpt3_general', prompt=query, queues=queues)
else:
return forward(model_name='gpt3_qa', prompt=[query, context], queues=queues)
def process_guesses(prompt, guess1=None, guess2=None, queues=None):
return forward(model_name='gpt3_guess', prompt=[prompt, guess1, guess2], queues=queues)
def coerce_to_numeric(string, no_string=False):
"""
This function takes a string as input and returns a numeric value after removing any non-numeric characters.
If the input string contains a range (e.g. "10-15"), it returns the first value in the range.
# TODO: Cases like '25to26' return 2526, which is not correct.
"""
if any(month in string.lower() for month in ['january', 'february', 'march', 'april', 'may', 'june', 'july',
'august', 'september', 'october', 'november', 'december']):
try:
return dateparser.parse(string).timestamp().year
except: # Parse Error
pass
try:
# If it is a word number (e.g. 'zero')
numeric = w2n.word_to_num(string)
return numeric
except ValueError:
pass
# Remove any non-numeric characters except the decimal point and the negative sign
string_re = re.sub("[^0-9\.\-]", "", string)
if string_re.startswith('-'):
string_re = '&' + string_re[1:]
# Check if the string includes a range
if "-" in string_re:
# Split the string into parts based on the dash character
parts = string_re.split("-")
return coerce_to_numeric(parts[0].replace('&', '-'))
else:
string_re = string_re.replace('&', '-')
try:
# Convert the string to a float or int depending on whether it has a decimal point
if "." in string_re:
numeric = float(string_re)
else:
numeric = int(string_re)
except:
if no_string:
raise ValueError
# No numeric values. Return input
return string
return numeric
|