UnarineLeo's picture
Update app.py
d104ff1 verified
raw
history blame
3.65 kB
import streamlit as st
from transformers import pipeline
# Initialize the pipeline for the fill-mask task
unmasker = pipeline('fill-mask', model='dsfsi/zabantu-bantu-250m')
# Sample sentences for different languages with placeholders for the masked word
sample_sentences = {
'Zulu': "Le ndoda ithi izo____ ukudla.", # Masked word for Zulu
'Tshivenda': "Mufana uyo____ vhukuma.", # Masked word for Tshivenda
'Sepedi': "Mosadi o ____ pheka.", # Masked word for Sepedi
'Tswana': "Monna o ____ tsamaya.", # Masked word for Tswana
'Tsonga': "N'wana wa xisati u ____ ku tsaka." # Masked word for Tsonga
}
# Function to perform fill-mask on sentences with the token '__' replaced
def fill_mask_for_languages(sentences):
results = {}
for language, sentence in sentences.items():
# Replace the '____' placeholder with the model's mask token
masked_sentence = sentence.replace('____', unmasker.tokenizer.mask_token)
# Get predictions for the masked sentence
unmasked = unmasker(masked_sentence)
# Store the result for each language
results[language] = unmasked
return results
# Streamlit interface
st.title("Fill Mask for Multiple Languages | Zabantu-Bantu-250m")
st.write("This app predicts the missing word for sentences in Zulu, Tshivenda, Sepedi, Tswana, and Tsonga using a Zabantu BERT model.")
# Display the original sample sentences
st.write("### Sample sentences:")
for language, sentence in sample_sentences.items():
st.write(f"**{language}**: {sentence}")
# User input for custom sentences
user_sentence = st.text_input("Enter your own sentence with a masked word (use '____'):", "Enter sentence here...")
# Add a submit button
if st.button("Submit"):
# Prepare user input for prediction
user_masked_sentence = user_sentence.replace('____', unmasker.tokenizer.mask_token)
# Get predictions for the user input sentence
user_predictions = unmasker(user_masked_sentence)
# Display results for user input
st.write("### Your Input:")
st.write(f"Original sentence: {user_sentence}")
st.write(f"Top prediction for the masked token: {user_predictions[0]['sequence']}")
# Display results for sample sentences
st.write("### Predictions for Sample Sentences:")
for language, predictions in fill_mask_for_languages(sample_sentences).items():
original_sentence = sample_sentences[language]
predicted_sentence = predictions[0]['sequence']
st.write(f"Original sentence ({language}): {original_sentence}")
st.write(f"Top prediction for the masked token: {predicted_sentence}\n")
st.write("=" * 80)
# Custom CSS styling for Streamlit elements
css = """
<style>
footer {display:none !important}
.stButton > button {
background-color: #17152e;
color: white;
border: none;
padding: 0.75em 2em;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 16px;
margin: 4px 2px;
cursor: pointer;
border-radius: 12px;
transition: background-color 0.3s ease;
}
.stButton > button:hover {
background-color: #3c4a6b;
}
.stTextInput, .stTextArea {
border: 1px solid #e6e6e6;
padding: 0.75em;
border-radius: 10px;
font-size: 16px;
width: 100%;
}
.stTextInput:focus, .stTextArea:focus {
border-color: #17152e;
outline: none;
box-shadow: 0px 0px 5px rgba(23, 21, 46, 0.5);
}
div[data-testid="stMarkdownContainer"] p {
font-size: 16px;
}
.stApp {
padding: 2em;
font-family: 'Poppins', sans-serif;
}
</style>
"""
st.markdown(css, unsafe_allow_html=True)