File size: 7,581 Bytes
f5f8f9a 15eff6a f5f8f9a e255bad f5f8f9a 4d5270d f5f8f9a 4d5270d f5f8f9a 4d5270d 0ce811e 4d5270d 0ce811e c369a13 4d5270d f5f8f9a 7a621b0 b92b795 7a621b0 4d5270d 15eff6a 4d5270d b51c864 d104ff1 5b5eeef 4d5270d 15eff6a 9f4d0d7 fa59459 15eff6a 5b5eeef 15eff6a 4d5270d d104ff1 9f4d0d7 15eff6a 9ba3728 b51c864 15eff6a 9f4d0d7 15eff6a 38bfd0b 15eff6a 38bfd0b 15eff6a 4a956d5 15eff6a 91470f6 15eff6a 5b5eeef f5f8f9a b51c864 15eff6a b51c864 15eff6a b51c864 f5f8f9a 15eff6a f5f8f9a 15eff6a 91470f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
from transformers import pipeline
from io import StringIO
unmasker = pipeline('fill-mask', model='dsfsi/zabantu-xlm-roberta')
st.set_page_config(layout="wide")
def fill_mask(sentences):
results = {}
warnings = []
for (language, sentence) in sentences.items():
if "<mask>" in sentence:
masked_sentence = sentence.replace('<mask>', unmasker.tokenizer.mask_token)
unmasked = unmasker(masked_sentence)
results[sentence] = (language, unmasked)
else:
warnings.append(f"Warning: No <mask> token found in sentence: {sentence}")
return results, warnings
def replace_mask(sentence, predicted_word):
return sentence.replace("<mask>", f"**{predicted_word}**")
st.title("Fill Mask | Zabantu-XLM-Roberta")
st.write(f"")
st.markdown("Zabantu-XLMR refers to a fleet of models trained on different combinations of South African Bantu languages. It supports the following languages Tshivenda, Nguni languages (Zulu, Xhosa, Swati), Sotho languages (Northern Sotho, Southern Sotho, Setswana), and Xitsonga.")
col1, col2 = st.columns(2)
if 'text_input' not in st.session_state:
st.session_state['text_input'] = ""
if 'warnings' not in st.session_state:
st.session_state['warnings'] = []
with col1:
with st.container(border=True):
st.markdown("Input :clipboard:")
select_options = ['Choose option', 'Enter text input', 'Upload a file(csv/txt)']
sample_sentence = "Rabulasi wa <mask> u khou bvelela nga u lima."
option_selected = st.selectbox(f"Select an input option:", select_options, index=0)
if option_selected == 'Enter text input':
text_input = st.text_area(
"Enter sentences with <mask> token(one sentence per line):",
value=st.session_state['text_input']
)
input_sentences = text_input.split("\n")
if st.button("Submit",use_container_width=True):
result, warnings = fill_mask(input_sentences)
st.session_state['warnings'] = warnings
if option_selected == 'Upload a file(csv/txt)':
uploaded_file = st.file_uploader("Choose a file-(one sentence per line)")
if uploaded_file is not None:
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
string_data = stringio.read()
input_sentences = string_data.split("\n")
if st.button("Submit",use_container_width=True):
result, warnings = fill_mask(input_sentences)
st.session_state['warnings'] = warnings
if st.session_state['warnings']:
for warning in st.session_state['warnings']:
st.warning(warning)
st.markdown("Example")
st.code(sample_sentence, wrap_lines=True)
if st.button("Test Example",use_container_width=True):
result, warnings = fill_mask(sample_sentence.split("\n"))
with col2:
with st.container(border=True):
st.markdown("Output :bar_chart:")
if 'result' in locals() and result:
if len(result) == 1:
for language, predictions in result.items():
for prediction in predictions:
predicted_word = prediction['token_str']
score = prediction['score'] * 100
st.markdown(f"""
<div class="bar">
<div class="bar-fill" style="width: {score}%;"></div>
</div>
<div class="container">
<div style="align-items: left;">{predicted_word}</div>
<div style="align-items: center;">{score:.2f}%</div>
</div>
""", unsafe_allow_html=True)
else:
for language, predictions in result.items():
if predictions:
top_prediction = predictions[0]
predicted_word = top_prediction['token_str']
score = top_prediction['score'] * 100
st.markdown(f"""
<div class="bar">
<div class="bar-fill" style="width: {score}%;"></div>
</div>
<div class="container">
<div style="align-items: left;">{predicted_word} ({language})</div>
<div style="align-items: right;">{score:.2f}%</div>
</div>
""", unsafe_allow_html=True)
if 'result' in locals():
if result:
line = 0
for sentence, predictions in result.items():
line += 1
predicted_word = predictions[0]['token_str']
full_sentence = replace_mask(sentence, predicted_word)
st.write(f"**Sentence {line}:** {full_sentence }")
css = """
<style>
footer {display:none !important;}
.gr-button-primary {
z-index: 14;
height: 43px;
width: 130px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(17, 20, 45) !important;
border: none !important;
text-align: center !important;
font-family: Poppins !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 12px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: none !important;
}
.gr-button-primary:hover{
z-index: 14;
height: 43px;
width: 130px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(66, 133, 244) !important;
border: none !important;
text-align: center !important;
font-family: Poppins !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 12px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
--tw-bg-opacity: 1 !important;
background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
--tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
--tw-gradient-from: rgb(17, 20, 45) !important;
--tw-gradient-to: rgb(255 150 51 / 0);
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500{
--tw-gradient-from:rgb(17, 20, 45) !important;
--tw-gradient-to: rgb(37 56 133 / 37%);
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500{
--tw-text-opacity: 1 !important;
color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}
.container {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 5px;
width: 100%;
}
.bar {
# width: 70%;
background-color: #e6e6e6;
border-radius: 12px;
overflow: hidden;
margin-right: 10px;
height: 5px;
}
.bar-fill {
background-color: #17152e;
height: 100%;
border-radius: 12px;
}
</style>
"""
st.markdown(css, unsafe_allow_html=True) |