import torch import numpy as np from torch.nn import functional as F def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): """ Taken from https://github.com/mkocabas/VIBE/blob/master/lib/utils/geometry.py Calculates the rotation matrices for a batch of rotation vectors - param rot_vecs: torch.tensor (N, 3) array of N axis-angle vectors - returns R: torch.tensor (N, 3, 3) rotation matrices """ batch_size = rot_vecs.shape[0] device = rot_vecs.device angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) rot_dir = rot_vecs / angle cos = torch.unsqueeze(torch.cos(angle), dim=1) sin = torch.unsqueeze(torch.sin(angle), dim=1) # Bx1 arrays rx, ry, rz = torch.split(rot_dir, 1, dim=1) K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1).view( (batch_size, 3, 3) ) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) return rot_mat def quaternion_mul(q0, q1): """ EXPECTS WXYZ :param q0 (*, 4) :param q1 (*, 4) """ r0, r1 = q0[..., :1], q1[..., :1] v0, v1 = q0[..., 1:], q1[..., 1:] r = r0 * r1 - (v0 * v1).sum(dim=-1, keepdim=True) v = r0 * v1 + r1 * v0 + torch.linalg.cross(v0, v1) return torch.cat([r, v], dim=-1) def quaternion_inverse(q, eps=1e-8): """ EXPECTS WXYZ :param q (*, 4) """ conj = torch.cat([q[..., :1], -q[..., 1:]], dim=-1) mag = torch.square(q).sum(dim=-1, keepdim=True) + eps return conj / mag def quaternion_slerp(t, q0, q1, eps=1e-8): """ :param t (*, 1) must be between 0 and 1 :param q0 (*, 4) :param q1 (*, 4) """ dims = q0.shape[:-1] t = t.view(*dims, 1) q0 = F.normalize(q0, p=2, dim=-1) q1 = F.normalize(q1, p=2, dim=-1) dot = (q0 * q1).sum(dim=-1, keepdim=True) # make sure we give the shortest rotation path (< 180d) neg = dot < 0 q1 = torch.where(neg, -q1, q1) dot = torch.where(neg, -dot, dot) angle = torch.acos(dot) # if angle is too small, just do linear interpolation collin = torch.abs(dot) > 1 - eps fac = 1 / torch.sin(angle) w0 = torch.where(collin, 1 - t, torch.sin((1 - t) * angle) * fac) w1 = torch.where(collin, t, torch.sin(t * angle) * fac) slerp = q0 * w0 + q1 * w1 return slerp def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert rotation matrix to Rodrigues vector """ quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion): """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h :param quaternion (*, 4) expects WXYZ :returns angle_axis (*, 3) """ # unpack input and compute conversion q1 = quaternion[..., 1] q2 = quaternion[..., 2] q3 = quaternion[..., 3] sin_squared_theta = q1 * q1 + q2 * q2 + q3 * q3 sin_theta = torch.sqrt(sin_squared_theta) cos_theta = quaternion[..., 0] two_theta = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta), ) k_pos = two_theta / sin_theta k_neg = 2.0 * torch.ones_like(sin_theta) k = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis def angle_axis_to_rotation_matrix(angle_axis): """ :param angle_axis (*, 3) return (*, 3, 3) """ quat = angle_axis_to_quaternion(angle_axis) return quaternion_to_rotation_matrix(quat) def quaternion_to_rotation_matrix(quaternion): """ Convert a quaternion to a rotation matrix. Taken from https://github.com/kornia/kornia, based on https://github.com/matthew-brett/transforms3d/blob/8965c48401d9e8e66b6a8c37c65f2fc200a076fa/transforms3d/quaternions.py#L101 https://github.com/tensorflow/graphics/blob/master/tensorflow_graphics/geometry/transformation/rotation_matrix_3d.py#L247 :param quaternion (N, 4) expects WXYZ order returns rotation matrix (N, 3, 3) """ # normalize the input quaternion quaternion_norm = F.normalize(quaternion, p=2, dim=-1, eps=1e-12) *dims, _ = quaternion_norm.shape # unpack the normalized quaternion components w, x, y, z = torch.chunk(quaternion_norm, chunks=4, dim=-1) # compute the actual conversion tx = 2.0 * x ty = 2.0 * y tz = 2.0 * z twx = tx * w twy = ty * w twz = tz * w txx = tx * x txy = ty * x txz = tz * x tyy = ty * y tyz = tz * y tzz = tz * z one = torch.tensor(1.0) matrix = torch.stack( ( one - (tyy + tzz), txy - twz, txz + twy, txy + twz, one - (txx + tzz), tyz - twx, txz - twy, tyz + twx, one - (txx + tyy), ), dim=-1, ).view(*dims, 3, 3) return matrix def angle_axis_to_quaternion(angle_axis): """ This function is borrowed from https://github.com/kornia/kornia Convert angle axis to quaternion in WXYZ order :param angle_axis (*, 3) :returns quaternion (*, 4) WXYZ order """ theta_sq = torch.sum(angle_axis**2, dim=-1, keepdim=True) # (*, 1) # need to handle the zero rotation case valid = theta_sq > 0 theta = torch.sqrt(theta_sq) half_theta = 0.5 * theta ones = torch.ones_like(half_theta) # fill zero with the limit of sin ax / x -> a k = torch.where(valid, torch.sin(half_theta) / theta, 0.5 * ones) w = torch.where(valid, torch.cos(half_theta), ones) quat = torch.cat([w, k * angle_axis], dim=-1) return quat def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 :param rotation_matrix (N, 3, 3) """ *dims, m, n = rotation_matrix.shape rmat_t = torch.transpose(rotation_matrix.reshape(-1, m, n), -1, -2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack( [ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], ], -1, ) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack( [ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1], ], -1, ) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack( [ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2, ], -1, ) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack( [ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0], ], -1, ) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt( t0_rep * mask_c0 + t1_rep * mask_c1 + t2_rep * mask_c2 # noqa + t3_rep * mask_c3 ) # noqa q *= 0.5 return q.reshape(*dims, 4)