import sys sys.path.append('droid_slam') from tqdm import tqdm import numpy as np import torch import lietorch import cv2 import os import glob import time import argparse import torch.nn.functional as F from droid import Droid def show_image(image): image = image.permute(1, 2, 0).cpu().numpy() cv2.imshow('image', image / 255.0) cv2.waitKey(1) def image_stream(datapath, image_size=[320, 512]): """ image generator """ fx, fy, cx, cy = 517.3, 516.5, 318.6, 255.3 K_l = np.array([fx, 0.0, cx, 0.0, fy, cy, 0.0, 0.0, 1.0]).reshape(3,3) d_l = np.array([0.2624, -0.9531, -0.0054, 0.0026, 1.1633]) # read all png images in folder images_list = sorted(glob.glob(os.path.join(datapath, 'rgb', '*.png')))[::2] for t, imfile in enumerate(images_list): image = cv2.imread(imfile) ht0, wd0, _ = image.shape image = cv2.undistort(image, K_l, d_l) image = cv2.resize(image, (320+32, 240+16)) image = torch.from_numpy(image).permute(2,0,1) intrinsics = torch.as_tensor([fx, fy, cx, cy]).cuda() intrinsics[0] *= image.shape[2] / 640.0 intrinsics[1] *= image.shape[1] / 480.0 intrinsics[2] *= image.shape[2] / 640.0 intrinsics[3] *= image.shape[1] / 480.0 # crop image to remove distortion boundary intrinsics[2] -= 16 intrinsics[3] -= 8 image = image[:, 8:-8, 16:-16] yield t, image[None], intrinsics if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--datapath") parser.add_argument("--weights", default="droid.pth") parser.add_argument("--buffer", type=int, default=512) parser.add_argument("--image_size", default=[240, 320]) parser.add_argument("--disable_vis", action="store_true") parser.add_argument("--beta", type=float, default=0.6) parser.add_argument("--filter_thresh", type=float, default=1.75) parser.add_argument("--warmup", type=int, default=12) parser.add_argument("--keyframe_thresh", type=float, default=2.25) parser.add_argument("--frontend_thresh", type=float, default=12.0) parser.add_argument("--frontend_window", type=int, default=25) parser.add_argument("--frontend_radius", type=int, default=2) parser.add_argument("--frontend_nms", type=int, default=1) parser.add_argument("--backend_thresh", type=float, default=15.0) parser.add_argument("--backend_radius", type=int, default=2) parser.add_argument("--backend_nms", type=int, default=3) args = parser.parse_args() args.stereo = False torch.multiprocessing.set_start_method('spawn') print("Running evaluation on {}".format(args.datapath)) print(args) droid = Droid(args) time.sleep(5) tstamps = [] for (t, image, intrinsics) in tqdm(image_stream(args.datapath)): if not args.disable_vis: show_image(image) droid.track(t, image, intrinsics=intrinsics) traj_est = droid.terminate(image_stream(args.datapath)) ### run evaluation ### print("#"*20 + " Results...") import evo from evo.core.trajectory import PoseTrajectory3D from evo.tools import file_interface from evo.core import sync import evo.main_ape as main_ape from evo.core.metrics import PoseRelation image_path = os.path.join(args.datapath, 'rgb') images_list = sorted(glob.glob(os.path.join(image_path, '*.png')))[::2] tstamps = [float(x.split('/')[-1][:-4]) for x in images_list] traj_est = PoseTrajectory3D( positions_xyz=traj_est[:,:3], orientations_quat_wxyz=traj_est[:,3:], timestamps=np.array(tstamps)) gt_file = os.path.join(args.datapath, 'groundtruth.txt') traj_ref = file_interface.read_tum_trajectory_file(gt_file) traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est) result = main_ape.ape(traj_ref, traj_est, est_name='traj', pose_relation=PoseRelation.translation_part, align=True, correct_scale=True) print(result)