FOCAL_LENGTH = 5000. # Mean and standard deviation for normalizing input image IMG_NORM_MEAN = [0.485, 0.456, 0.406] IMG_NORM_STD = [0.229, 0.224, 0.225] """ We create a superset of joints containing the OpenPose joints together with the ones that each dataset provides. We keep a superset of 24 joints such that we include all joints from every dataset. If a dataset doesn't provide annotations for a specific joint, we simply ignore it. The joints used here are the following: """ JOINT_NAMES = [ 'OP Nose', 'OP Neck', 'OP RShoulder', #0,1,2 'OP RElbow', 'OP RWrist', 'OP LShoulder', #3,4,5 'OP LElbow', 'OP LWrist', 'OP MidHip', #6, 7,8 'OP RHip', 'OP RKnee', 'OP RAnkle', #9,10,11 'OP LHip', 'OP LKnee', 'OP LAnkle', #12,13,14 'OP REye', 'OP LEye', 'OP REar', #15,16,17 'OP LEar', 'OP LBigToe', 'OP LSmallToe', #18,19,20 'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel', #21, 22, 23, 24 ##Total 25 joints for openpose 'Right Ankle', 'Right Knee', 'Right Hip', #0,1,2 'Left Hip', 'Left Knee', 'Left Ankle', #3, 4, 5 'Right Wrist', 'Right Elbow', 'Right Shoulder', #6 'Left Shoulder', 'Left Elbow', 'Left Wrist', #9 'Neck (LSP)', 'Top of Head (LSP)', #12, 13 'Pelvis (MPII)', 'Thorax (MPII)', #14, 15 'Spine (H36M)', 'Jaw (H36M)', #16, 17 'Head (H36M)', 'Nose', 'Left Eye', #18, 19, 20 'Right Eye', 'Left Ear', 'Right Ear' #21,22,23 (Total 24 joints) ] # Dict containing the joints in numerical order JOINT_IDS = {JOINT_NAMES[i]: i for i in range(len(JOINT_NAMES))} # Map joints to SMPL joints JOINT_MAP = { 'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17, 'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16, 'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0, 'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8, 'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7, 'OP REye': 25, 'OP LEye': 26, 'OP REar': 27, 'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30, 'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34, 'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45, 'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7, 'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17, 'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20, 'Neck (LSP)': 47, 'Top of Head (LSP)': 48, 'Pelvis (MPII)': 49, 'Thorax (MPII)': 50, 'Spine (H36M)': 51, 'Jaw (H36M)': 52, 'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26, 'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27 } # Joint selectors # Indices to get the 14 LSP joints from the 17 H36M joints H36M_TO_J17 = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9] H36M_TO_J14 = H36M_TO_J17[:14] # Indices to get the 14 LSP joints from the ground truth joints J24_TO_J17 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 14, 16, 17] J24_TO_J14 = J24_TO_J17[:14] # Permutation of SMPL pose parameters when flipping the shape SMPL_JOINTS_FLIP_PERM = [0, 2, 1, 3, 5, 4, 6, 8, 7, 9, 11, 10, 12, 14, 13, 15, 17, 16, 19, 18, 21, 20, 23, 22] SMPL_POSE_FLIP_PERM = [] for i in SMPL_JOINTS_FLIP_PERM: SMPL_POSE_FLIP_PERM.append(3*i) SMPL_POSE_FLIP_PERM.append(3*i+1) SMPL_POSE_FLIP_PERM.append(3*i+2) # Permutation indices for the 24 ground truth joints J24_FLIP_PERM = [5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 12, 13, 14, 15, 16, 17, 18, 19, 21, 20, 23, 22] # Permutation indices for the full set of 49 joints J49_FLIP_PERM = [0, 1, 5, 6, 7, 2, 3, 4, 8, 12, 13, 14, 9, 10, 11, 16, 15, 18, 17, 22, 23, 24, 19, 20, 21]\ + [25+i for i in J24_FLIP_PERM]