import numpy as np import cv2 import torch from torchmin import minimize def est_scale_iterative(slam_depth, pred_depth, iters=10, msk=None): """ Simple depth-align by iterative median and thresholding """ s = pred_depth / slam_depth if msk is None: msk = np.zeros_like(pred_depth) else: msk = cv2.resize(msk, (pred_depth.shape[1], pred_depth.shape[0])) robust = (msk<0.5) * (0