Spaces:
Sleeping
Sleeping
import copy | |
import numpy as np | |
import torch | |
from hawor.utils.process import run_mano, run_mano_left | |
from hawor.utils.rotation import angle_axis_to_quaternion, rotation_matrix_to_angle_axis | |
from scipy.interpolate import interp1d | |
def cam2world_convert(R_c2w_sla, t_c2w_sla, data_out, handedness): | |
init_rot_mat = copy.deepcopy(data_out["init_root_orient"]) | |
init_rot_mat = torch.einsum("tij,btjk->btik", R_c2w_sla, init_rot_mat) | |
init_rot = rotation_matrix_to_angle_axis(init_rot_mat) | |
init_rot_quat = angle_axis_to_quaternion(init_rot) | |
# data_out["init_root_orient"] = rotation_matrix_to_angle_axis(data_out["init_root_orient"]) | |
# data_out["init_hand_pose"] = rotation_matrix_to_angle_axis(data_out["init_hand_pose"]) | |
data_out_init_root_orient = rotation_matrix_to_angle_axis(data_out["init_root_orient"]) | |
data_out_init_hand_pose = rotation_matrix_to_angle_axis(data_out["init_hand_pose"]) | |
init_trans = data_out["init_trans"] # (B, T, 3) | |
if handedness == "right": | |
outputs = run_mano(data_out["init_trans"], data_out_init_root_orient, data_out_init_hand_pose, betas=data_out["init_betas"]) | |
elif handedness == "left": | |
outputs = run_mano_left(data_out["init_trans"], data_out_init_root_orient, data_out_init_hand_pose, betas=data_out["init_betas"]) | |
root_loc = outputs["joints"][..., 0, :].cpu() # (B, T, 3) | |
offset = init_trans - root_loc # It is a constant, no matter what the rotation is. | |
init_trans = ( | |
torch.einsum("tij,btj->bti", R_c2w_sla, root_loc) | |
+ t_c2w_sla[None, :] | |
+ offset | |
) | |
data_world = { | |
"init_root_orient": init_rot, # (B, T, 3) | |
"init_hand_pose": data_out_init_hand_pose, # (B, T, 15, 3) | |
"init_trans": init_trans, # (B, T, 3) | |
"init_betas": data_out["init_betas"] # (B, T, 10) | |
} | |
return data_world | |
def quaternion_to_matrix(quaternions): | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def load_slam_cam(fpath): | |
print(f"Loading cameras from {fpath}...") | |
pred_cam = dict(np.load(fpath, allow_pickle=True)) | |
pred_traj = pred_cam['traj'] | |
t_c2w_sla = torch.tensor(pred_traj[:, :3]) * pred_cam['scale'] | |
pred_camq = torch.tensor(pred_traj[:, 3:]) | |
R_c2w_sla = quaternion_to_matrix(pred_camq[:,[3,0,1,2]]) | |
R_w2c_sla = R_c2w_sla.transpose(-1, -2) | |
t_w2c_sla = -torch.einsum("bij,bj->bi", R_w2c_sla, t_c2w_sla) | |
return R_w2c_sla, t_w2c_sla, R_c2w_sla, t_c2w_sla | |
def interpolate_bboxes(bboxes): | |
T = bboxes.shape[0] | |
zero_indices = np.where(np.all(bboxes == 0, axis=1))[0] | |
non_zero_indices = np.where(np.any(bboxes != 0, axis=1))[0] | |
if len(zero_indices) == 0: | |
return bboxes | |
interpolated_bboxes = bboxes.copy() | |
for i in range(5): | |
interp_func = interp1d(non_zero_indices, bboxes[non_zero_indices, i], kind='linear', fill_value="extrapolate") | |
interpolated_bboxes[zero_indices, i] = interp_func(zero_indices) | |
return interpolated_bboxes |