Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from mono.utils.comm import get_func | |
class EncoderDecoder(nn.Module): | |
def __init__(self, cfg): | |
super(EncoderDecoder, self).__init__() | |
self.encoder = get_func('mono.model.' + cfg.model.backbone.prefix + cfg.model.backbone.type)(**cfg.model.backbone) | |
self.decoder = get_func('mono.model.' + cfg.model.decode_head.prefix + cfg.model.decode_head.type)(cfg) | |
self.depth_out_head = DepthOutHead(method=cfg.model.depth_out_head.method, **cfg) | |
self.training = True | |
def forward(self, input, **kwargs): | |
# [f_32, f_16, f_8, f_4] | |
features = self.encoder(input) | |
# [x_32, x_16, x_8, x_4, x, ...] | |
decode_list = self.decoder(features) | |
pred, conf, logit, bins_edges = self.depth_out_head([decode_list[4], ]) | |
auxi_preds = None | |
auxi_logits = None | |
out = dict( | |
prediction=pred[0], | |
confidence=conf[0], | |
pred_logit=logit[0], | |
auxi_pred=auxi_preds, | |
auxi_logit_list=auxi_logits, | |
bins_edges=bins_edges[0], | |
) | |
return out |