Spaces:
Running
Running
import torch | |
from torch import nn, Tensor | |
import math | |
class PositionalEmbedding(nn.Module): | |
def __init__(self, seq_len: int = 32, d_model: int = 96): | |
super().__init__() | |
self.pos_emb = nn.Embedding(seq_len + 1, d_model) | |
def forward(self, inputs): | |
positions = ( | |
torch.arange(inputs.size(0), device=inputs.device) | |
.expand(inputs.size(1), inputs.size(0)) | |
.contiguous() | |
+ 1 | |
) | |
outputs = inputs + self.pos_emb(positions).permute(1, 0, 2) | |
return outputs | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) | |
) | |
pe = torch.zeros(max_len, 1, d_model) | |
pe[:, 0, 0::2] = torch.sin(position * div_term) | |
pe[:, 0, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
def forward(self, x: Tensor) -> Tensor: | |
""" | |
Args: | |
x: Tensor, shape [seq_len, batch_size, embedding_dim] | |
""" | |
x = x + self.pe[: x.size(0)] | |
return self.dropout(x) | |