HaWoR / lib /vis /renderer.py
ThunderVVV's picture
update
5f028d6
raw
history blame
11.9 kB
# Useful rendering functions from WHAM (some modification)
import cv2
import torch
import numpy as np
from pytorch3d.renderer import (
PerspectiveCameras,
TexturesVertex,
PointLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.structures import Meshes
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.renderer.cameras import look_at_rotation
from pytorch3d.renderer.camera_conversions import _cameras_from_opencv_projection
from .tools import get_colors, checkerboard_geometry
def overlay_image_onto_background(image, mask, bbox, background):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
out_image = background.copy()
bbox = bbox[0].int().cpu().numpy().copy()
roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]]
roi_image[mask] = image[mask]
out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image
return out_image
def update_intrinsics_from_bbox(K_org, bbox):
device, dtype = K_org.device, K_org.dtype
K = torch.zeros((K_org.shape[0], 4, 4)
).to(device=device, dtype=dtype)
K[:, :3, :3] = K_org.clone()
K[:, 2, 2] = 0
K[:, 2, -1] = 1
K[:, -1, 2] = 1
image_sizes = []
for idx, bbox in enumerate(bbox):
left, upper, right, lower = bbox
cx, cy = K[idx, 0, 2], K[idx, 1, 2]
new_cx = cx - left
new_cy = cy - upper
new_height = max(lower - upper, 1)
new_width = max(right - left, 1)
new_cx = new_width - new_cx
new_cy = new_height - new_cy
K[idx, 0, 2] = new_cx
K[idx, 1, 2] = new_cy
image_sizes.append((int(new_height), int(new_width)))
return K, image_sizes
def perspective_projection(x3d, K, R=None, T=None):
if R != None:
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
if T != None:
x3d = x3d + T.transpose(1, 2)
x2d = torch.div(x3d, x3d[..., 2:])
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
return x2d
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)
cx = (left + right) / 2
cy = (top + bottom) / 2
width = (right - left)
height = (bottom - top)
new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1)
new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w)
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1)
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)
bbox = torch.stack((new_left.detach(), new_top.detach(),
new_right.detach(), new_bottom.detach())).int().float().T
return bbox
class Renderer():
def __init__(self, width, height, focal_length, device,
bin_size=None, max_faces_per_bin=None):
self.width = width
self.height = height
self.focal_length = focal_length
self.device = device
self.initialize_camera_params()
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
self.create_renderer(bin_size, max_faces_per_bin)
def create_renderer(self, bin_size, max_faces_per_bin):
self.renderer = MeshRenderer(
rasterizer=MeshRasterizer(
raster_settings=RasterizationSettings(
image_size=self.image_sizes[0],
blur_radius=1e-5, bin_size=bin_size,
max_faces_per_bin=max_faces_per_bin),
),
shader=SoftPhongShader(
device=self.device,
lights=self.lights,
)
)
def initialize_camera_params(self):
"""Hard coding for camera parameters
TODO: Do some soft coding"""
# Extrinsics
self.R = torch.diag(
torch.tensor([1, 1, 1])
).float().to(self.device).unsqueeze(0)
self.T = torch.tensor(
[0, 0, 0]
).unsqueeze(0).float().to(self.device)
# Intrinsics
self.K = torch.tensor(
[[self.focal_length, 0, self.width/2],
[0, self.focal_length, self.height/2],
[0, 0, 1]]
).unsqueeze(0).float().to(self.device)
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
# self.K_full = self.K # test
self.cameras = self.create_camera()
def create_camera(self, R=None, T=None):
if R is not None:
self.R = R.clone().view(1, 3, 3).to(self.device)
if T is not None:
self.T = T.clone().view(1, 3).to(self.device)
return PerspectiveCameras(
device=self.device,
R=self.R, #.mT,
T=self.T,
K=self.K_full,
image_size=self.image_sizes,
in_ndc=False)
def create_camera_from_cv(self, R, T, K=None, image_size=None):
# R: [1, 3, 3] Tensor
# T: [1, 3] Tensor
# K: [1, 3, 3] Tensor
# image_size: [1, 2] Tensor in HW
if K is None:
K = self.K
if image_size is None:
image_size = torch.tensor(self.image_sizes)
cameras = _cameras_from_opencv_projection(R, T, K, image_size)
lights = PointLights(device=K.device, location=T)
return cameras, lights
def set_ground(self, length, center_x, center_z):
device = self.device
v, f, vc, fc = map(torch.from_numpy, checkerboard_geometry(length=length, c1=center_x, c2=center_z, up="y"))
v, f, vc = v.to(device), f.to(device), vc.to(device)
self.ground_geometry = [v, f, vc]
def update_bbox(self, x3d, scale=2.0, mask=None):
""" Update bbox of cameras from the given 3d points
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
"""
if x3d.size(-1) != 3:
x2d = x3d.unsqueeze(0)
else:
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))
if mask is not None:
x2d = x2d[:, ~mask]
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def reset_bbox(self,):
bbox = torch.zeros((1, 4)).float().to(self.device)
bbox[0, 2] = self.width
bbox[0, 3] = self.height
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]):
self.update_bbox(vertices[::50], scale=1.2)
vertices = vertices.unsqueeze(0)
if colors[0] > 1: colors = [c / 255. for c in colors]
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
verts_features = verts_features.repeat(1, vertices.shape[1], 1)
textures = TexturesVertex(verts_features=verts_features)
mesh = Meshes(verts=vertices,
faces=self.faces,
textures=textures,)
materials = Materials(
device=self.device,
specular_color=(colors, ),
shininess=0
)
results = torch.flip(
self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights),
[1, 2]
)
image = results[0, ..., :3] * 255
mask = results[0, ..., -1] > 1e-3
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
self.reset_bbox()
return image
def render_with_ground(self, verts, faces, colors, cameras, lights):
"""
:param verts (B, V, 3)
:param faces (F, 3)
:param colors (B, 3)
"""
# (B, V, 3), (B, F, 3), (B, V, 3)
verts, faces, colors = prep_shared_geometry(verts, faces, colors)
# (V, 3), (F, 3), (V, 3)
gv, gf, gc = self.ground_geometry
verts = list(torch.unbind(verts, dim=0)) + [gv]
faces = list(torch.unbind(faces, dim=0)) + [gf]
colors = list(torch.unbind(colors, dim=0)) + [gc[..., :3]]
mesh = create_meshes(verts, faces, colors)
materials = Materials(
device=self.device,
shininess=0
)
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
return image
def render_multiple(self, verts_list, faces, colors_list, cameras, lights):
"""
:param verts (B, V, 3)
:param faces (F, 3)
:param colors (B, 3)
"""
# (B, V, 3), (B, F, 3), (B, V, 3)
verts_, faces_, colors_ = [], [], []
for i, verts in enumerate(verts_list):
colors = colors_list[[i]]
verts_i, faces_i, colors_i = prep_shared_geometry(verts, faces, colors)
if i == 0:
verts_ = list(torch.unbind(verts_i, dim=0))
faces_ = list(torch.unbind(faces_i, dim=0))
colors_ = list(torch.unbind(colors_i, dim=0))
else:
verts_ += list(torch.unbind(verts_i, dim=0))
faces_ += list(torch.unbind(faces_i, dim=0))
colors_ += list(torch.unbind(colors_i, dim=0))
# # (V, 3), (F, 3), (V, 3)
# gv, gf, gc = self.ground_geometry
# verts_ += [gv]
# faces_ += [gf]
# colors_ += [gc[..., :3]]
mesh = create_meshes(verts_, faces_, colors_)
materials = Materials(
device=self.device,
shininess=0
)
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
mask = results[0, ..., -1].cpu().numpy() > 0
return image, mask
def prep_shared_geometry(verts, faces, colors):
"""
:param verts (B, V, 3)
:param faces (F, 3)
:param colors (B, 4)
"""
B, V, _ = verts.shape
F, _ = faces.shape
colors = colors.unsqueeze(1).expand(B, V, -1)[..., :3]
faces = faces.unsqueeze(0).expand(B, F, -1)
return verts, faces, colors
def create_meshes(verts, faces, colors):
"""
:param verts (B, V, 3)
:param faces (B, F, 3)
:param colors (B, V, 3)
"""
textures = TexturesVertex(verts_features=colors)
meshes = Meshes(verts=verts, faces=faces, textures=textures)
return join_meshes_as_scene(meshes)
def get_global_cameras(verts, device, distance=5, position=(-5.0, 5.0, 0.0)):
positions = torch.tensor([position]).repeat(len(verts), 1)
targets = verts.mean(1)
directions = targets - positions
directions = directions / torch.norm(directions, dim=-1).unsqueeze(-1) * distance
positions = targets - directions
rotation = look_at_rotation(positions, targets, ).mT
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
lights = PointLights(device=device, location=[position])
return rotation, translation, lights