Spaces:
Running
Running
# Useful rendering functions from WHAM (some modification) | |
import cv2 | |
import torch | |
import numpy as np | |
from pytorch3d.renderer import ( | |
PerspectiveCameras, | |
TexturesVertex, | |
PointLights, | |
Materials, | |
RasterizationSettings, | |
MeshRenderer, | |
MeshRasterizer, | |
SoftPhongShader, | |
) | |
from pytorch3d.structures import Meshes | |
from pytorch3d.structures.meshes import join_meshes_as_scene | |
from pytorch3d.renderer.cameras import look_at_rotation | |
from pytorch3d.renderer.camera_conversions import _cameras_from_opencv_projection | |
from .tools import get_colors, checkerboard_geometry | |
def overlay_image_onto_background(image, mask, bbox, background): | |
if isinstance(image, torch.Tensor): | |
image = image.detach().cpu().numpy() | |
if isinstance(mask, torch.Tensor): | |
mask = mask.detach().cpu().numpy() | |
out_image = background.copy() | |
bbox = bbox[0].int().cpu().numpy().copy() | |
roi_image = out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] | |
roi_image[mask] = image[mask] | |
out_image[bbox[1]:bbox[3], bbox[0]:bbox[2]] = roi_image | |
return out_image | |
def update_intrinsics_from_bbox(K_org, bbox): | |
device, dtype = K_org.device, K_org.dtype | |
K = torch.zeros((K_org.shape[0], 4, 4) | |
).to(device=device, dtype=dtype) | |
K[:, :3, :3] = K_org.clone() | |
K[:, 2, 2] = 0 | |
K[:, 2, -1] = 1 | |
K[:, -1, 2] = 1 | |
image_sizes = [] | |
for idx, bbox in enumerate(bbox): | |
left, upper, right, lower = bbox | |
cx, cy = K[idx, 0, 2], K[idx, 1, 2] | |
new_cx = cx - left | |
new_cy = cy - upper | |
new_height = max(lower - upper, 1) | |
new_width = max(right - left, 1) | |
new_cx = new_width - new_cx | |
new_cy = new_height - new_cy | |
K[idx, 0, 2] = new_cx | |
K[idx, 1, 2] = new_cy | |
image_sizes.append((int(new_height), int(new_width))) | |
return K, image_sizes | |
def perspective_projection(x3d, K, R=None, T=None): | |
if R != None: | |
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2) | |
if T != None: | |
x3d = x3d + T.transpose(1, 2) | |
x2d = torch.div(x3d, x3d[..., 2:]) | |
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2] | |
return x2d | |
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2): | |
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w) | |
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w) | |
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h) | |
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h) | |
cx = (left + right) / 2 | |
cy = (top + bottom) / 2 | |
width = (right - left) | |
height = (bottom - top) | |
new_left = torch.clamp(cx - width/2 * scaleFactor, min=0, max=img_w-1) | |
new_right = torch.clamp(cx + width/2 * scaleFactor, min=1, max=img_w) | |
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h-1) | |
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h) | |
bbox = torch.stack((new_left.detach(), new_top.detach(), | |
new_right.detach(), new_bottom.detach())).int().float().T | |
return bbox | |
class Renderer(): | |
def __init__(self, width, height, focal_length, device, | |
bin_size=None, max_faces_per_bin=None): | |
self.width = width | |
self.height = height | |
self.focal_length = focal_length | |
self.device = device | |
self.initialize_camera_params() | |
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]]) | |
self.create_renderer(bin_size, max_faces_per_bin) | |
def create_renderer(self, bin_size, max_faces_per_bin): | |
self.renderer = MeshRenderer( | |
rasterizer=MeshRasterizer( | |
raster_settings=RasterizationSettings( | |
image_size=self.image_sizes[0], | |
blur_radius=1e-5, bin_size=bin_size, | |
max_faces_per_bin=max_faces_per_bin), | |
), | |
shader=SoftPhongShader( | |
device=self.device, | |
lights=self.lights, | |
) | |
) | |
def initialize_camera_params(self): | |
"""Hard coding for camera parameters | |
TODO: Do some soft coding""" | |
# Extrinsics | |
self.R = torch.diag( | |
torch.tensor([1, 1, 1]) | |
).float().to(self.device).unsqueeze(0) | |
self.T = torch.tensor( | |
[0, 0, 0] | |
).unsqueeze(0).float().to(self.device) | |
# Intrinsics | |
self.K = torch.tensor( | |
[[self.focal_length, 0, self.width/2], | |
[0, self.focal_length, self.height/2], | |
[0, 0, 1]] | |
).unsqueeze(0).float().to(self.device) | |
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float() | |
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes) | |
# self.K_full = self.K # test | |
self.cameras = self.create_camera() | |
def create_camera(self, R=None, T=None): | |
if R is not None: | |
self.R = R.clone().view(1, 3, 3).to(self.device) | |
if T is not None: | |
self.T = T.clone().view(1, 3).to(self.device) | |
return PerspectiveCameras( | |
device=self.device, | |
R=self.R, #.mT, | |
T=self.T, | |
K=self.K_full, | |
image_size=self.image_sizes, | |
in_ndc=False) | |
def create_camera_from_cv(self, R, T, K=None, image_size=None): | |
# R: [1, 3, 3] Tensor | |
# T: [1, 3] Tensor | |
# K: [1, 3, 3] Tensor | |
# image_size: [1, 2] Tensor in HW | |
if K is None: | |
K = self.K | |
if image_size is None: | |
image_size = torch.tensor(self.image_sizes) | |
cameras = _cameras_from_opencv_projection(R, T, K, image_size) | |
lights = PointLights(device=K.device, location=T) | |
return cameras, lights | |
def set_ground(self, length, center_x, center_z): | |
device = self.device | |
v, f, vc, fc = map(torch.from_numpy, checkerboard_geometry(length=length, c1=center_x, c2=center_z, up="y")) | |
v, f, vc = v.to(device), f.to(device), vc.to(device) | |
self.ground_geometry = [v, f, vc] | |
def update_bbox(self, x3d, scale=2.0, mask=None): | |
""" Update bbox of cameras from the given 3d points | |
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3) | |
""" | |
if x3d.size(-1) != 3: | |
x2d = x3d.unsqueeze(0) | |
else: | |
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1)) | |
if mask is not None: | |
x2d = x2d[:, ~mask] | |
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale) | |
self.bboxes = bbox | |
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox) | |
self.cameras = self.create_camera() | |
self.create_renderer() | |
def reset_bbox(self,): | |
bbox = torch.zeros((1, 4)).float().to(self.device) | |
bbox[0, 2] = self.width | |
bbox[0, 3] = self.height | |
self.bboxes = bbox | |
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox) | |
self.cameras = self.create_camera() | |
self.create_renderer() | |
def render_mesh(self, vertices, background, colors=[0.8, 0.8, 0.8]): | |
self.update_bbox(vertices[::50], scale=1.2) | |
vertices = vertices.unsqueeze(0) | |
if colors[0] > 1: colors = [c / 255. for c in colors] | |
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype) | |
verts_features = verts_features.repeat(1, vertices.shape[1], 1) | |
textures = TexturesVertex(verts_features=verts_features) | |
mesh = Meshes(verts=vertices, | |
faces=self.faces, | |
textures=textures,) | |
materials = Materials( | |
device=self.device, | |
specular_color=(colors, ), | |
shininess=0 | |
) | |
results = torch.flip( | |
self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights), | |
[1, 2] | |
) | |
image = results[0, ..., :3] * 255 | |
mask = results[0, ..., -1] > 1e-3 | |
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy()) | |
self.reset_bbox() | |
return image | |
def render_with_ground(self, verts, faces, colors, cameras, lights): | |
""" | |
:param verts (B, V, 3) | |
:param faces (F, 3) | |
:param colors (B, 3) | |
""" | |
# (B, V, 3), (B, F, 3), (B, V, 3) | |
verts, faces, colors = prep_shared_geometry(verts, faces, colors) | |
# (V, 3), (F, 3), (V, 3) | |
gv, gf, gc = self.ground_geometry | |
verts = list(torch.unbind(verts, dim=0)) + [gv] | |
faces = list(torch.unbind(faces, dim=0)) + [gf] | |
colors = list(torch.unbind(colors, dim=0)) + [gc[..., :3]] | |
mesh = create_meshes(verts, faces, colors) | |
materials = Materials( | |
device=self.device, | |
shininess=0 | |
) | |
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials) | |
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8) | |
return image | |
def render_multiple(self, verts_list, faces, colors_list, cameras, lights): | |
""" | |
:param verts (B, V, 3) | |
:param faces (F, 3) | |
:param colors (B, 3) | |
""" | |
# (B, V, 3), (B, F, 3), (B, V, 3) | |
verts_, faces_, colors_ = [], [], [] | |
for i, verts in enumerate(verts_list): | |
colors = colors_list[[i]] | |
verts_i, faces_i, colors_i = prep_shared_geometry(verts, faces, colors) | |
if i == 0: | |
verts_ = list(torch.unbind(verts_i, dim=0)) | |
faces_ = list(torch.unbind(faces_i, dim=0)) | |
colors_ = list(torch.unbind(colors_i, dim=0)) | |
else: | |
verts_ += list(torch.unbind(verts_i, dim=0)) | |
faces_ += list(torch.unbind(faces_i, dim=0)) | |
colors_ += list(torch.unbind(colors_i, dim=0)) | |
# # (V, 3), (F, 3), (V, 3) | |
# gv, gf, gc = self.ground_geometry | |
# verts_ += [gv] | |
# faces_ += [gf] | |
# colors_ += [gc[..., :3]] | |
mesh = create_meshes(verts_, faces_, colors_) | |
materials = Materials( | |
device=self.device, | |
shininess=0 | |
) | |
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials) | |
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8) | |
mask = results[0, ..., -1].cpu().numpy() > 0 | |
return image, mask | |
def prep_shared_geometry(verts, faces, colors): | |
""" | |
:param verts (B, V, 3) | |
:param faces (F, 3) | |
:param colors (B, 4) | |
""" | |
B, V, _ = verts.shape | |
F, _ = faces.shape | |
colors = colors.unsqueeze(1).expand(B, V, -1)[..., :3] | |
faces = faces.unsqueeze(0).expand(B, F, -1) | |
return verts, faces, colors | |
def create_meshes(verts, faces, colors): | |
""" | |
:param verts (B, V, 3) | |
:param faces (B, F, 3) | |
:param colors (B, V, 3) | |
""" | |
textures = TexturesVertex(verts_features=colors) | |
meshes = Meshes(verts=verts, faces=faces, textures=textures) | |
return join_meshes_as_scene(meshes) | |
def get_global_cameras(verts, device, distance=5, position=(-5.0, 5.0, 0.0)): | |
positions = torch.tensor([position]).repeat(len(verts), 1) | |
targets = verts.mean(1) | |
directions = targets - positions | |
directions = directions / torch.norm(directions, dim=-1).unsqueeze(-1) * distance | |
positions = targets - directions | |
rotation = look_at_rotation(positions, targets, ).mT | |
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1) | |
lights = PointLights(device=device, location=[position]) | |
return rotation, translation, lights | |