Spaces:
Running
Running
import numpy as np | |
import einops | |
import torch | |
import torch.nn as nn | |
from .components.pose_transformer import TransformerDecoder | |
if torch.cuda.is_available(): | |
autocast = torch.cuda.amp.autocast | |
# print('Using autocast') | |
else: | |
# dummy GradScaler for PyTorch < 1.6 OR no cuda | |
class autocast: | |
def __init__(self, enabled=True): | |
pass | |
def __enter__(self): | |
pass | |
def __exit__(self, *args): | |
pass | |
class MANOTransformerDecoderHead(nn.Module): | |
""" HMR2 Cross-attention based SMPL Transformer decoder | |
""" | |
def __init__(self, cfg): | |
super().__init__() | |
transformer_args = dict( | |
depth = 6, # originally 6 | |
heads = 8, | |
mlp_dim = 1024, | |
dim_head = 64, | |
dropout = 0.0, | |
emb_dropout = 0.0, | |
norm = "layer", | |
context_dim = 1280, | |
num_tokens = 1, | |
token_dim = 1, | |
dim = 1024 | |
) | |
self.transformer = TransformerDecoder(**transformer_args) | |
dim = 1024 | |
npose = 16*6 | |
self.decpose = nn.Linear(dim, npose) | |
self.decshape = nn.Linear(dim, 10) | |
self.deccam = nn.Linear(dim, 3) | |
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01) | |
mean_params = np.load(cfg.MANO.MEAN_PARAMS) | |
init_hand_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0) | |
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0) | |
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0) | |
self.register_buffer('init_hand_pose', init_hand_pose) | |
self.register_buffer('init_betas', init_betas) | |
self.register_buffer('init_cam', init_cam) | |
def forward(self, x, **kwargs): | |
batch_size = x.shape[0] | |
# vit pretrained backbone is channel-first. Change to token-first | |
x = einops.rearrange(x, 'b c h w -> b (h w) c') | |
init_hand_pose = self.init_hand_pose.expand(batch_size, -1) | |
init_betas = self.init_betas.expand(batch_size, -1) | |
init_cam = self.init_cam.expand(batch_size, -1) | |
# Pass through transformer | |
token = torch.zeros(batch_size, 1, 1).to(x.device) | |
token_out = self.transformer(token, context=x) | |
token_out = token_out.squeeze(1) # (B, C) | |
# Readout from token_out | |
pred_pose = self.decpose(token_out) + init_hand_pose | |
pred_shape = self.decshape(token_out) + init_betas | |
pred_cam = self.deccam(token_out) + init_cam | |
return pred_pose, pred_shape, pred_cam | |
class temporal_attention(nn.Module): | |
def __init__(self, in_dim=1280, out_dim=1280, hdim=512, nlayer=6, nhead=4, residual=False): | |
super(temporal_attention, self).__init__() | |
self.hdim = hdim | |
self.out_dim = out_dim | |
self.residual = residual | |
self.l1 = nn.Linear(in_dim, hdim) | |
self.l2 = nn.Linear(hdim, out_dim) | |
self.pos_embedding = PositionalEncoding(hdim, dropout=0.1) | |
TranLayer = nn.TransformerEncoderLayer(d_model=hdim, nhead=nhead, dim_feedforward=1024, | |
dropout=0.1, activation='gelu') | |
self.trans = nn.TransformerEncoder(TranLayer, num_layers=nlayer) | |
nn.init.xavier_uniform_(self.l1.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.l2.weight, gain=0.01) | |
def forward(self, x): | |
x = x.permute(1,0,2) # (b,t,c) -> (t,b,c) | |
h = self.l1(x) | |
h = self.pos_embedding(h) | |
h = self.trans(h) | |
h = self.l2(h) | |
if self.residual: | |
x = x[..., :self.out_dim] + h | |
else: | |
x = h | |
x = x.permute(1,0,2) | |
return x | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout=0.1, max_len=100): | |
super(PositionalEncoding, self).__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0).transpose(0, 1) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
# not used in the final model | |
x = x + self.pe[:x.shape[0], :] | |
return self.dropout(x) | |