HaWoR / lib /models /modules.py
ThunderVVV's picture
update
5f028d6
raw
history blame
4.66 kB
import numpy as np
import einops
import torch
import torch.nn as nn
from .components.pose_transformer import TransformerDecoder
if torch.cuda.is_available():
autocast = torch.cuda.amp.autocast
# print('Using autocast')
else:
# dummy GradScaler for PyTorch < 1.6 OR no cuda
class autocast:
def __init__(self, enabled=True):
pass
def __enter__(self):
pass
def __exit__(self, *args):
pass
class MANOTransformerDecoderHead(nn.Module):
""" HMR2 Cross-attention based SMPL Transformer decoder
"""
def __init__(self, cfg):
super().__init__()
transformer_args = dict(
depth = 6, # originally 6
heads = 8,
mlp_dim = 1024,
dim_head = 64,
dropout = 0.0,
emb_dropout = 0.0,
norm = "layer",
context_dim = 1280,
num_tokens = 1,
token_dim = 1,
dim = 1024
)
self.transformer = TransformerDecoder(**transformer_args)
dim = 1024
npose = 16*6
self.decpose = nn.Linear(dim, npose)
self.decshape = nn.Linear(dim, 10)
self.deccam = nn.Linear(dim, 3)
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
mean_params = np.load(cfg.MANO.MEAN_PARAMS)
init_hand_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0)
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0)
self.register_buffer('init_hand_pose', init_hand_pose)
self.register_buffer('init_betas', init_betas)
self.register_buffer('init_cam', init_cam)
def forward(self, x, **kwargs):
batch_size = x.shape[0]
# vit pretrained backbone is channel-first. Change to token-first
x = einops.rearrange(x, 'b c h w -> b (h w) c')
init_hand_pose = self.init_hand_pose.expand(batch_size, -1)
init_betas = self.init_betas.expand(batch_size, -1)
init_cam = self.init_cam.expand(batch_size, -1)
# Pass through transformer
token = torch.zeros(batch_size, 1, 1).to(x.device)
token_out = self.transformer(token, context=x)
token_out = token_out.squeeze(1) # (B, C)
# Readout from token_out
pred_pose = self.decpose(token_out) + init_hand_pose
pred_shape = self.decshape(token_out) + init_betas
pred_cam = self.deccam(token_out) + init_cam
return pred_pose, pred_shape, pred_cam
class temporal_attention(nn.Module):
def __init__(self, in_dim=1280, out_dim=1280, hdim=512, nlayer=6, nhead=4, residual=False):
super(temporal_attention, self).__init__()
self.hdim = hdim
self.out_dim = out_dim
self.residual = residual
self.l1 = nn.Linear(in_dim, hdim)
self.l2 = nn.Linear(hdim, out_dim)
self.pos_embedding = PositionalEncoding(hdim, dropout=0.1)
TranLayer = nn.TransformerEncoderLayer(d_model=hdim, nhead=nhead, dim_feedforward=1024,
dropout=0.1, activation='gelu')
self.trans = nn.TransformerEncoder(TranLayer, num_layers=nlayer)
nn.init.xavier_uniform_(self.l1.weight, gain=0.01)
nn.init.xavier_uniform_(self.l2.weight, gain=0.01)
def forward(self, x):
x = x.permute(1,0,2) # (b,t,c) -> (t,b,c)
h = self.l1(x)
h = self.pos_embedding(h)
h = self.trans(h)
h = self.l2(h)
if self.residual:
x = x[..., :self.out_dim] + h
else:
x = h
x = x.permute(1,0,2)
return x
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=100):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
# not used in the final model
x = x + self.pe[:x.shape[0], :]
return self.dropout(x)