File size: 4,586 Bytes
b7eedf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import sys
sys.path.append('droid_slam')

from tqdm import tqdm
import numpy as np
import torch
import lietorch
import cv2
import os
import glob 
import time
import argparse

import torch.nn.functional as F
from droid import Droid

import matplotlib.pyplot as plt


def show_image(image):
    image = image.permute(1, 2, 0).cpu().numpy()
    cv2.imshow('image', image / 255.0)
    cv2.waitKey(1)

def image_stream(datapath, use_depth=False, stride=1):
    """ image generator """

    fx, fy, cx, cy = np.loadtxt(os.path.join(datapath, 'calibration.txt')).tolist()
    image_list = sorted(glob.glob(os.path.join(datapath, 'rgb', '*.png')))[::stride]
    depth_list = sorted(glob.glob(os.path.join(datapath, 'depth', '*.png')))[::stride]

    for t, (image_file, depth_file) in enumerate(zip(image_list, depth_list)):
        image = cv2.imread(image_file)
        depth = cv2.imread(depth_file, cv2.IMREAD_ANYDEPTH) / 5000.0

        h0, w0, _ = image.shape
        h1 = int(h0 * np.sqrt((384 * 512) / (h0 * w0)))
        w1 = int(w0 * np.sqrt((384 * 512) / (h0 * w0)))

        image = cv2.resize(image, (w1, h1))
        image = image[:h1-h1%8, :w1-w1%8]
        image = torch.as_tensor(image).permute(2, 0, 1)
        
        depth = torch.as_tensor(depth)
        depth = F.interpolate(depth[None,None], (h1, w1)).squeeze()
        depth = depth[:h1-h1%8, :w1-w1%8]

        intrinsics = torch.as_tensor([fx, fy, cx, cy])
        intrinsics[0::2] *= (w1 / w0)
        intrinsics[1::2] *= (h1 / h0)

        if use_depth:
            yield t, image[None], depth, intrinsics

        else:
            yield t, image[None], intrinsics

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--datapath")
    parser.add_argument("--weights", default="droid.pth")
    parser.add_argument("--buffer", type=int, default=1024)
    parser.add_argument("--image_size", default=[240, 320])
    parser.add_argument("--disable_vis", action="store_true")

    parser.add_argument("--beta", type=float, default=0.5)
    parser.add_argument("--filter_thresh", type=float, default=2.0)
    parser.add_argument("--warmup", type=int, default=8)
    parser.add_argument("--keyframe_thresh", type=float, default=3.5)
    parser.add_argument("--frontend_thresh", type=float, default=16.0)
    parser.add_argument("--frontend_window", type=int, default=16)
    parser.add_argument("--frontend_radius", type=int, default=1)
    parser.add_argument("--frontend_nms", type=int, default=0)

    parser.add_argument("--stereo", action="store_true")
    parser.add_argument("--depth", action="store_true")

    parser.add_argument("--backend_thresh", type=float, default=22.0)
    parser.add_argument("--backend_radius", type=int, default=2)
    parser.add_argument("--backend_nms", type=int, default=3)
    args = parser.parse_args()

    torch.multiprocessing.set_start_method('spawn')

    print("Running evaluation on {}".format(args.datapath))
    print(args)

    # this can usually be set to 2-3 except for "camera_shake" scenes
    # set to 2 for test scenes
    stride = 1

    tstamps = []
    for (t, image, depth, intrinsics) in tqdm(image_stream(args.datapath, use_depth=True, stride=stride)):
        if not args.disable_vis:
            show_image(image[0])

        if t == 0:
            args.image_size = [image.shape[2], image.shape[3]]
            droid = Droid(args)
        
        droid.track(t, image, depth, intrinsics=intrinsics)
    
    traj_est = droid.terminate(image_stream(args.datapath, use_depth=False, stride=stride))

    ### run evaluation ###

    print("#"*20 + " Results...")

    import evo
    from evo.core.trajectory import PoseTrajectory3D
    from evo.tools import file_interface
    from evo.core import sync
    import evo.main_ape as main_ape
    from evo.core.metrics import PoseRelation

    image_path = os.path.join(args.datapath, 'rgb')
    images_list = sorted(glob.glob(os.path.join(image_path, '*.png')))[::stride]
    tstamps = [float(x.split('/')[-1][:-4]) for x in images_list]

    traj_est = PoseTrajectory3D(
        positions_xyz=traj_est[:,:3],
        orientations_quat_wxyz=traj_est[:,3:],
        timestamps=np.array(tstamps))

    gt_file = os.path.join(args.datapath, 'groundtruth.txt')
    traj_ref = file_interface.read_tum_trajectory_file(gt_file)

    traj_ref, traj_est = sync.associate_trajectories(traj_ref, traj_est)

    result = main_ape.ape(traj_ref, traj_est, est_name='traj', 
        pose_relation=PoseRelation.translation_part, align=True, correct_scale=False)

    print(result.stats)