File size: 5,757 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import numpy as np
import cv2
import torch
from torchmin import minimize


def est_scale_iterative(slam_depth, pred_depth, iters=10, msk=None):
    """ Simple depth-align by iterative median and thresholding """
    s = pred_depth / slam_depth
    
    if msk is None:
        msk = np.zeros_like(pred_depth)
    else:
        msk = cv2.resize(msk, (pred_depth.shape[1], pred_depth.shape[0]))

    robust = (msk<0.5) * (0<pred_depth) * (pred_depth<10)
    s_est = s[robust]
    scale = np.median(s_est)
    scales_ = [scale]

    for _ in range(iters):
        slam_depth_0 = slam_depth * scale
        robust = (msk<0.5) * (0<slam_depth_0) * (slam_depth_0<10) * (0<pred_depth) * (pred_depth<10)
        s_est = s[robust]
        scale = np.median(s_est)
        scales_.append(scale)

    return scale


def est_scale_gmof(slam_depth, pred_depth, lr=1, sigma=0.5, iters=500, msk=None):
    """ Simple depth-align by robust least-square """
    if msk is None:
        msk = np.zeros_like(pred_depth)
    else:
        msk = cv2.resize(msk, (pred_depth.shape[1], pred_depth.shape[0]))

    robust = (msk<0.5) * (0<pred_depth) * (pred_depth<10)
    pm = torch.from_numpy(pred_depth[robust])
    sm = torch.from_numpy(slam_depth[robust])

    scale = torch.tensor([1.], requires_grad=True)
    optim = torch.optim.Adam([scale], lr=lr)
    losses = []
    for i in range(iters):
        loss = sm * scale - pm
        loss = gmof(loss, sigma=sigma).mean()

        optim.zero_grad()
        loss.backward()
        optim.step()
        losses.append(loss.item())

    scale = scale.detach().cpu().item()

    return scale

def est_offset(pred_depth, hand_depth, sigma=0.5, msk=None, 
                     far_thresh=10):
    """ Depth-align by iterative + robust least-square """
    if msk is None:
        msk = np.zeros_like(pred_depth)
    else:
        msk = cv2.resize(msk, (pred_depth.shape[1], pred_depth.shape[0]))

    # Stage 1: Iterative steps
    s = pred_depth - hand_depth

    robust = (msk<0.5) * (0<pred_depth) * (pred_depth<far_thresh)
    s_est = s[robust]
    offset = np.median(s_est)
    return offset

def est_scale_hybrid(slam_depth, pred_depth, sigma=0.5, msk=None, near_thresh=0,
                     far_thresh=10):
    """ Depth-align by iterative + robust least-square """
    if msk is None:
        msk = np.zeros_like(pred_depth)
    else:
        msk = cv2.resize(msk, (pred_depth.shape[1], pred_depth.shape[0]))

    # Stage 1: Iterative steps
    s = pred_depth / slam_depth

    robust = (msk<0.5) * (near_thresh<pred_depth) * (pred_depth<far_thresh)
    s_est = s[robust]
    scale = np.median(s_est)

    for _ in range(10):
        slam_depth_0 = slam_depth * scale
        robust = (msk<0.5) * (0<slam_depth_0) * (slam_depth_0<far_thresh) * (near_thresh<pred_depth) * (pred_depth<far_thresh)
        s_est = s[robust]
        scale = np.median(s_est)


    # Stage 2: Robust optimization
    robust = (msk<0.5) * (0<slam_depth_0) * (slam_depth_0<far_thresh) * (near_thresh<pred_depth) * (pred_depth<far_thresh)
    pm = torch.from_numpy(pred_depth[robust])
    sm = torch.from_numpy(slam_depth[robust])

    def f(x):
        loss = sm * x - pm
        loss = gmof(loss, sigma=sigma).mean()
        return loss

    x0 = torch.tensor([scale])
    result = minimize(f, x0,  method='bfgs')
    scale = result.x.detach().cpu().item()

    return scale


def est_scale_wo_mask(slam_depth, pred_depth, sigma=0.5):
    """ Depth-align by iterative + robust least-square """
    msk=None
    near_thresh=0
    far_thresh=10000

    if msk is None:
        msk = np.zeros_like(pred_depth)
    else:
        msk = cv2.resize(msk, (pred_depth.shape[1], pred_depth.shape[0]))

    # Stage 1: Iterative steps
    s = pred_depth / slam_depth

    robust = (msk<0.5) * (near_thresh<pred_depth) * (pred_depth<far_thresh)
    s_est = s[robust]
    scale = np.median(s_est)

    for _ in range(10):
        slam_depth_0 = slam_depth * scale
        robust = (msk<0.5) * (0<slam_depth_0) * (slam_depth_0<far_thresh) * (near_thresh<pred_depth) * (pred_depth<far_thresh)
        s_est = s[robust]
        scale = np.median(s_est)


    # Stage 2: Robust optimization
    robust = (msk<0.5) * (0<slam_depth_0) * (slam_depth_0<far_thresh) * (near_thresh<pred_depth) * (pred_depth<far_thresh)
    pm = torch.from_numpy(pred_depth[robust])
    sm = torch.from_numpy(slam_depth[robust])

    def f(x):
        loss = sm * x - pm
        loss = gmof(loss, sigma=sigma).mean()
        return loss

    x0 = torch.tensor([scale])
    result = minimize(f, x0,  method='bfgs')
    scale = result.x.detach().cpu().item()

    return scale

def scale_shift_align(smpl_depth, pred_depth, sigma=0.5):
    """ Align pred_depth to smpl depth """
    smpl = torch.from_numpy(smpl_depth)
    pred = torch.from_numpy(pred_depth)

    def f(x):
        loss = smpl - (pred * x[0] + x[1])
        loss = gmof(loss, sigma=sigma).mean()
        return loss

    x0 = torch.tensor([1., 0.])
    result = minimize(f, x0,  method='bfgs')
    scale_shift = result.x.detach().cpu().numpy()

    return scale_shift


def shift_align(smpl_depth, pred_depth, sigma=0.5):
    """ Align pred_depth to smpl depth by only shift """
    smpl = torch.from_numpy(smpl_depth)
    pred = torch.from_numpy(pred_depth)

    def f(x):
        loss = smpl - (pred + x)
        loss = gmof(loss, sigma=sigma).mean()
        return loss

    x0 = torch.tensor([0.])
    result = minimize(f, x0,  method='bfgs')
    scale_shift = result.x.detach().cpu().numpy()

    return scale_shift


def gmof(x, sigma=100):
    """
    Geman-McClure error function
    """
    x_squared =  x ** 2
    sigma_squared = sigma ** 2
    return (sigma_squared * x_squared) / (sigma_squared + x_squared)