File size: 14,058 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import copy
import os
import joblib
import numpy as np
from scipy.spatial.transform import Slerp, Rotation
import torch

from hawor.utils.process import run_mano, run_mano_left
from hawor.utils.rotation import angle_axis_to_quaternion, angle_axis_to_rotation_matrix, quaternion_to_rotation_matrix, rotation_matrix_to_angle_axis
from lib.utils.geometry import rotmat_to_rot6d
from lib.utils.geometry import rot6d_to_rotmat

def slerp_interpolation_aa(pos, valid):

    B, T, N, _ = pos.shape  # B: 批次大小, T: 时间步长, N: 关节数, 4: 四元数维度
    pos_interp = pos.copy()  # 创建副本以存储插值结果
    
    for b in range(B):
        for n in range(N):
            quat_b_n = pos[b, :, n, :]
            valid_b_n = valid[b, :]
            
            invalid_idxs = np.where(~valid_b_n)[0]
            valid_idxs = np.where(valid_b_n)[0]

            if len(invalid_idxs) == 0:
                continue
            
            if len(valid_idxs) > 1:
                valid_times = valid_idxs  # 有效时间步
                valid_rots = Rotation.from_rotvec(quat_b_n[valid_idxs])  # 有效四元数
                
                slerp = Slerp(valid_times, valid_rots)
                
                for idx in invalid_idxs:
                    if idx < valid_idxs[0]:  # 时间步小于第一个有效时间步,进行外推
                        pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[0]]  # 复制第一个有效四元数
                    elif idx > valid_idxs[-1]:  # 时间步大于最后一个有效时间步,进行外推
                        pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[-1]]  # 复制最后一个有效四元数
                    else:
                        interp_rot = slerp([idx])
                        pos_interp[b, idx, n, :] = interp_rot.as_rotvec()[0]
    # print("#######")
    # if N > 1:
    #     print(pos[1,0,11])
    #     print(pos_interp[1,0,11])
    
    return pos_interp

def slerp_interpolation_quat(pos, valid):

    # wxyz to xyzw
    pos = pos[:, :, :, [1, 2, 3, 0]]

    B, T, N, _ = pos.shape  # B: 批次大小, T: 时间步长, N: 关节数, 4: 四元数维度
    pos_interp = pos.copy()  # 创建副本以存储插值结果
    
    for b in range(B):
        for n in range(N):
            quat_b_n = pos[b, :, n, :]
            valid_b_n = valid[b, :]
            
            invalid_idxs = np.where(~valid_b_n)[0]
            valid_idxs = np.where(valid_b_n)[0]

            if len(invalid_idxs) == 0:
                continue
            
            if len(valid_idxs) > 1:
                valid_times = valid_idxs  # 有效时间步
                valid_rots = Rotation.from_quat(quat_b_n[valid_idxs])  # 有效四元数
                
                slerp = Slerp(valid_times, valid_rots)
                
                for idx in invalid_idxs:
                    if idx < valid_idxs[0]:  # 时间步小于第一个有效时间步,进行外推
                        pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[0]]  # 复制第一个有效四元数
                    elif idx > valid_idxs[-1]:  # 时间步大于最后一个有效时间步,进行外推
                        pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[-1]]  # 复制最后一个有效四元数
                    else:
                        interp_rot = slerp([idx])
                        pos_interp[b, idx, n, :] = interp_rot.as_quat()[0]
    
    # xyzw to wxyz
    pos_interp = pos_interp[:, :, :, [3, 0, 1, 2]]
    return pos_interp


def linear_interpolation_nd(pos, valid):
    B, T = pos.shape[:2]  # 取出批次大小B和时间步长T
    feature_dim = pos.shape[2]  # ** 代表的任意维度
    pos_interp = pos.copy()  # 创建一个副本,用来保存插值结果
    
    for b in range(B):
        for idx in range(feature_dim):  # 针对任意维度
            pos_b_idx = pos[b, :, idx]  # 取出第b批次对应的**维度下的一个时间序列
            valid_b = valid[b, :]  # 当前批次的有效标志
            
            # 找到无效的索引(False)
            invalid_idxs = np.where(~valid_b)[0]
            valid_idxs = np.where(valid_b)[0]

            if len(invalid_idxs) == 0:
                continue
            
            # 对无效部分进行线性插值
            if len(valid_idxs) > 1:  # 确保有足够的有效点用于插值
                pos_b_idx[invalid_idxs] = np.interp(invalid_idxs, valid_idxs, pos_b_idx[valid_idxs])
                pos_interp[b, :, idx] = pos_b_idx  # 保存插值结果
    
    return pos_interp

def world2canonical_convert(R_c2w_sla, t_c2w_sla, data_out, handedness):
    init_rot_mat = copy.deepcopy(data_out["init_root_orient"])
    init_rot_mat = torch.einsum("tij,btjk->btik", R_c2w_sla, init_rot_mat)
    init_rot = rotation_matrix_to_angle_axis(init_rot_mat)
    init_rot_quat = angle_axis_to_quaternion(init_rot)
    # data_out["init_root_orient"] = rotation_matrix_to_angle_axis(data_out["init_root_orient"])
    # data_out["init_hand_pose"] = rotation_matrix_to_angle_axis(data_out["init_hand_pose"])
    data_out_init_root_orient = rotation_matrix_to_angle_axis(data_out["init_root_orient"])
    data_out_init_hand_pose = rotation_matrix_to_angle_axis(data_out["init_hand_pose"])

    init_trans = data_out["init_trans"] # (B, T, 3)
    if handedness == "left":
        outputs = run_mano_left(data_out["init_trans"], data_out_init_root_orient, data_out_init_hand_pose, betas=data_out["init_betas"])

    elif handedness == "right":
        outputs = run_mano(data_out["init_trans"], data_out_init_root_orient, data_out_init_hand_pose, betas=data_out["init_betas"])
    root_loc = outputs["joints"][..., 0, :].cpu()  # (B, T, 3)
    offset = init_trans - root_loc  # It is a constant, no matter what the rotation is.
    init_trans = (
        torch.einsum("tij,btj->bti", R_c2w_sla, root_loc)
        + t_c2w_sla[None, :]
        + offset
    )

    data_world = {
        "init_root_orient": init_rot, # (B, T, 3)
        "init_hand_pose": data_out_init_hand_pose, # (B, T, 15, 3)
        "init_trans": init_trans,  # (B, T, 3)
        "init_betas": data_out["init_betas"]  # (B, T, 10)
    }

    return data_world

def filling_preprocess(item):

    num_joints = 15

    global_trans = item['trans'] # (2, seq_len, 3)
    global_rot = item['rot'] #(2, seq_len, 3)
    hand_pose = item['hand_pose'] # (2, seq_len, 45)
    betas = item['betas'] # (2, seq_len, 10)
    valid = item['valid'] # (2, seq_len)

    N, T, _ = global_trans.shape
    R_canonical2world_left_aa = torch.from_numpy(global_rot[0, 0])
    R_canonical2world_right_aa = torch.from_numpy(global_rot[1, 0])
    R_world2canonical_left = angle_axis_to_rotation_matrix(R_canonical2world_left_aa).t()
    R_world2canonical_right = angle_axis_to_rotation_matrix(R_canonical2world_right_aa).t()
    

    # transform left hand to canonical
    hand_pose = hand_pose.reshape(N, T, num_joints, 3)
    data_world_left = {
        "init_trans": torch.from_numpy(global_trans[0:1]),
        "init_root_orient": angle_axis_to_rotation_matrix(torch.from_numpy(global_rot[0:1])),
        "init_hand_pose": angle_axis_to_rotation_matrix(torch.from_numpy(hand_pose[0:1])),
        "init_betas": torch.from_numpy(betas[0:1]),
    }

    data_left_init_root_orient = rotation_matrix_to_angle_axis(data_world_left["init_root_orient"])
    data_left_init_hand_pose = rotation_matrix_to_angle_axis(data_world_left["init_hand_pose"])
    outputs = run_mano_left(data_world_left["init_trans"], data_left_init_root_orient, data_left_init_hand_pose, betas=data_world_left["init_betas"])
    init_trans = data_world_left["init_trans"][0, 0] # (3,)
    root_loc = outputs["joints"][0, 0, 0, :].cpu()  # (3,)
    offset = init_trans - root_loc  # It is a constant, no matter what the rotation is.
    t_world2canonical_left = -torch.einsum("ij,j->i", R_world2canonical_left, root_loc) - offset

    R_world2canonical_left = R_world2canonical_left.repeat(T, 1, 1)
    t_world2canonical_left = t_world2canonical_left.repeat(T, 1)
    data_canonical_left = world2canonical_convert(R_world2canonical_left, t_world2canonical_left, data_world_left, "left")

    # transform right hand to canonical
    data_world_right = {
        "init_trans": torch.from_numpy(global_trans[1:2]),
        "init_root_orient": angle_axis_to_rotation_matrix(torch.from_numpy(global_rot[1:2])),
        "init_hand_pose": angle_axis_to_rotation_matrix(torch.from_numpy(hand_pose[1:2])),
        "init_betas": torch.from_numpy(betas[1:2]),
    }

    data_right_init_root_orient = rotation_matrix_to_angle_axis(data_world_right["init_root_orient"])
    data_right_init_hand_pose = rotation_matrix_to_angle_axis(data_world_right["init_hand_pose"])
    outputs = run_mano(data_world_right["init_trans"], data_right_init_root_orient, data_right_init_hand_pose, betas=data_world_right["init_betas"])
    init_trans = data_world_right["init_trans"][0, 0] # (3,)
    root_loc = outputs["joints"][0, 0, 0, :].cpu()  # (3,)
    offset = init_trans - root_loc  # It is a constant, no matter what the rotation is.
    t_world2canonical_right = -torch.einsum("ij,j->i", R_world2canonical_right, root_loc) - offset

    R_world2canonical_right = R_world2canonical_right.repeat(T, 1, 1)
    t_world2canonical_right = t_world2canonical_right.repeat(T, 1)
    data_canonical_right = world2canonical_convert(R_world2canonical_right, t_world2canonical_right, data_world_right, "right")

    # merge left and right canonical data
    global_rot = torch.cat((data_canonical_left['init_root_orient'], data_canonical_right['init_root_orient']))
    global_trans = torch.cat((data_canonical_left['init_trans'], data_canonical_right['init_trans'])).numpy()
    
    # global_rot = angle_axis_to_quaternion(global_rot).numpy().reshape(N, T, 1, 4)
    global_rot = global_rot.reshape(N, T, 1, 3).numpy()
    
    hand_pose = hand_pose.reshape(N, T, 15, 3)
    # hand_pose = angle_axis_to_quaternion(torch.from_numpy(hand_pose)).numpy()

    # lerp and slerp
    global_trans_lerped = linear_interpolation_nd(global_trans, valid)
    betas_lerped = linear_interpolation_nd(betas, valid)
    global_rot_slerped = slerp_interpolation_aa(global_rot, valid)
    hand_pose_slerped = slerp_interpolation_aa(hand_pose, valid)
    

    # convert to rot6d

    global_rot_slerped_mat = angle_axis_to_rotation_matrix(torch.from_numpy(global_rot_slerped.reshape(N*T, -1)))
    # global_rot_slerped_mat = quaternion_to_rotation_matrix(torch.from_numpy(global_rot_slerped.reshape(N*T, -1)))
    global_rot_slerped_rot6d = rotmat_to_rot6d(global_rot_slerped_mat).reshape(N, T, -1).numpy()
    hand_pose_slerped_mat = angle_axis_to_rotation_matrix(torch.from_numpy(hand_pose_slerped.reshape(N*T*num_joints, -1)))
    # hand_pose_slerped_mat = quaternion_to_rotation_matrix(torch.from_numpy(hand_pose_slerped.reshape(N*T*num_joints, -1)))
    hand_pose_slerped_rot6d = rotmat_to_rot6d(hand_pose_slerped_mat).reshape(N, T, -1).numpy()


    # concat to (T, concat_dim)
    global_pose_vec_input = np.concatenate((global_trans_lerped, betas_lerped, global_rot_slerped_rot6d, hand_pose_slerped_rot6d), axis=-1).transpose(1, 0, 2).reshape(T, -1)

    R_canon2w_left = R_world2canonical_left.transpose(-1, -2)
    t_canon2w_left = -torch.einsum("tij,tj->ti", R_canon2w_left, t_world2canonical_left)
    R_canon2w_right = R_world2canonical_right.transpose(-1, -2)
    t_canon2w_right = -torch.einsum("tij,tj->ti", R_canon2w_right, t_world2canonical_right)

    transform_w_canon = {
        "R_w2canon_left": R_world2canonical_left,
        "t_w2canon_left": t_world2canonical_left,
        "R_canon2w_left": R_canon2w_left,
        "t_canon2w_left": t_canon2w_left,

        "R_w2canon_right": R_world2canonical_right,
        "t_w2canon_right": t_world2canonical_right,
        "R_canon2w_right": R_canon2w_right,
        "t_canon2w_right": t_canon2w_right,
    }
    
    return global_pose_vec_input, transform_w_canon

def custom_rot6d_to_rotmat(rot6d):
    original_shape = rot6d.shape[:-1]
    rot6d = rot6d.reshape(-1, 6)
    mat = rot6d_to_rotmat(rot6d)
    mat = mat.reshape(*original_shape, 3, 3)
    return mat

def filling_postprocess(output, transform_w_canon):
    # output = output.numpy()
    output = output.permute(1, 0, 2) # (2, T, -1)
    N, T, _ = output.shape
    canon_trans = output[:, :, :3]
    betas = output[:, :, 3:13]
    canon_rot_rot6d = output[:, :, 13:19]
    hand_pose_rot6d = output[:, :, 19:109].reshape(N, T, 15, 6)

    canon_rot_mat = custom_rot6d_to_rotmat(canon_rot_rot6d)
    hand_pose_mat = custom_rot6d_to_rotmat(hand_pose_rot6d)

    data_canonical_left = {
        "init_trans": canon_trans[[0], :, :],
        "init_root_orient": canon_rot_mat[[0], :, :, :],
        "init_hand_pose": hand_pose_mat[[0], :, :, :, :],
        "init_betas": betas[[0], :, :]
    }

    data_canonical_right = {
        "init_trans": canon_trans[[1], :, :],
        "init_root_orient": canon_rot_mat[[1], :, :, :],
        "init_hand_pose": hand_pose_mat[[1], :, :, :, :],
        "init_betas": betas[[1], :, :]
    }

    R_canon2w_left = transform_w_canon['R_canon2w_left']
    t_canon2w_left = transform_w_canon['t_canon2w_left']
    R_canon2w_right = transform_w_canon['R_canon2w_right']
    t_canon2w_right = transform_w_canon['t_canon2w_right']


    world_left = world2canonical_convert(R_canon2w_left, t_canon2w_left, data_canonical_left, "left")
    world_right = world2canonical_convert(R_canon2w_right, t_canon2w_right, data_canonical_right, "right")

    global_rot = torch.cat((world_left['init_root_orient'], world_right['init_root_orient'])).numpy()
    global_trans = torch.cat((world_left['init_trans'], world_right['init_trans'])).numpy()

    pred_data = {
        "trans": global_trans, # (2, T, 3)
        "rot": global_rot, # (2, T, 3)
        "hand_pose": rotation_matrix_to_angle_axis(hand_pose_mat).flatten(-2).numpy(), # (2, T, 45)
        "betas": betas.numpy(), # (2, T, 10)
    }

    return pred_data