Spaces:
Sleeping
Sleeping
File size: 14,058 Bytes
5f028d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import copy
import os
import joblib
import numpy as np
from scipy.spatial.transform import Slerp, Rotation
import torch
from hawor.utils.process import run_mano, run_mano_left
from hawor.utils.rotation import angle_axis_to_quaternion, angle_axis_to_rotation_matrix, quaternion_to_rotation_matrix, rotation_matrix_to_angle_axis
from lib.utils.geometry import rotmat_to_rot6d
from lib.utils.geometry import rot6d_to_rotmat
def slerp_interpolation_aa(pos, valid):
B, T, N, _ = pos.shape # B: 批次大小, T: 时间步长, N: 关节数, 4: 四元数维度
pos_interp = pos.copy() # 创建副本以存储插值结果
for b in range(B):
for n in range(N):
quat_b_n = pos[b, :, n, :]
valid_b_n = valid[b, :]
invalid_idxs = np.where(~valid_b_n)[0]
valid_idxs = np.where(valid_b_n)[0]
if len(invalid_idxs) == 0:
continue
if len(valid_idxs) > 1:
valid_times = valid_idxs # 有效时间步
valid_rots = Rotation.from_rotvec(quat_b_n[valid_idxs]) # 有效四元数
slerp = Slerp(valid_times, valid_rots)
for idx in invalid_idxs:
if idx < valid_idxs[0]: # 时间步小于第一个有效时间步,进行外推
pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[0]] # 复制第一个有效四元数
elif idx > valid_idxs[-1]: # 时间步大于最后一个有效时间步,进行外推
pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[-1]] # 复制最后一个有效四元数
else:
interp_rot = slerp([idx])
pos_interp[b, idx, n, :] = interp_rot.as_rotvec()[0]
# print("#######")
# if N > 1:
# print(pos[1,0,11])
# print(pos_interp[1,0,11])
return pos_interp
def slerp_interpolation_quat(pos, valid):
# wxyz to xyzw
pos = pos[:, :, :, [1, 2, 3, 0]]
B, T, N, _ = pos.shape # B: 批次大小, T: 时间步长, N: 关节数, 4: 四元数维度
pos_interp = pos.copy() # 创建副本以存储插值结果
for b in range(B):
for n in range(N):
quat_b_n = pos[b, :, n, :]
valid_b_n = valid[b, :]
invalid_idxs = np.where(~valid_b_n)[0]
valid_idxs = np.where(valid_b_n)[0]
if len(invalid_idxs) == 0:
continue
if len(valid_idxs) > 1:
valid_times = valid_idxs # 有效时间步
valid_rots = Rotation.from_quat(quat_b_n[valid_idxs]) # 有效四元数
slerp = Slerp(valid_times, valid_rots)
for idx in invalid_idxs:
if idx < valid_idxs[0]: # 时间步小于第一个有效时间步,进行外推
pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[0]] # 复制第一个有效四元数
elif idx > valid_idxs[-1]: # 时间步大于最后一个有效时间步,进行外推
pos_interp[b, idx, n, :] = quat_b_n[valid_idxs[-1]] # 复制最后一个有效四元数
else:
interp_rot = slerp([idx])
pos_interp[b, idx, n, :] = interp_rot.as_quat()[0]
# xyzw to wxyz
pos_interp = pos_interp[:, :, :, [3, 0, 1, 2]]
return pos_interp
def linear_interpolation_nd(pos, valid):
B, T = pos.shape[:2] # 取出批次大小B和时间步长T
feature_dim = pos.shape[2] # ** 代表的任意维度
pos_interp = pos.copy() # 创建一个副本,用来保存插值结果
for b in range(B):
for idx in range(feature_dim): # 针对任意维度
pos_b_idx = pos[b, :, idx] # 取出第b批次对应的**维度下的一个时间序列
valid_b = valid[b, :] # 当前批次的有效标志
# 找到无效的索引(False)
invalid_idxs = np.where(~valid_b)[0]
valid_idxs = np.where(valid_b)[0]
if len(invalid_idxs) == 0:
continue
# 对无效部分进行线性插值
if len(valid_idxs) > 1: # 确保有足够的有效点用于插值
pos_b_idx[invalid_idxs] = np.interp(invalid_idxs, valid_idxs, pos_b_idx[valid_idxs])
pos_interp[b, :, idx] = pos_b_idx # 保存插值结果
return pos_interp
def world2canonical_convert(R_c2w_sla, t_c2w_sla, data_out, handedness):
init_rot_mat = copy.deepcopy(data_out["init_root_orient"])
init_rot_mat = torch.einsum("tij,btjk->btik", R_c2w_sla, init_rot_mat)
init_rot = rotation_matrix_to_angle_axis(init_rot_mat)
init_rot_quat = angle_axis_to_quaternion(init_rot)
# data_out["init_root_orient"] = rotation_matrix_to_angle_axis(data_out["init_root_orient"])
# data_out["init_hand_pose"] = rotation_matrix_to_angle_axis(data_out["init_hand_pose"])
data_out_init_root_orient = rotation_matrix_to_angle_axis(data_out["init_root_orient"])
data_out_init_hand_pose = rotation_matrix_to_angle_axis(data_out["init_hand_pose"])
init_trans = data_out["init_trans"] # (B, T, 3)
if handedness == "left":
outputs = run_mano_left(data_out["init_trans"], data_out_init_root_orient, data_out_init_hand_pose, betas=data_out["init_betas"])
elif handedness == "right":
outputs = run_mano(data_out["init_trans"], data_out_init_root_orient, data_out_init_hand_pose, betas=data_out["init_betas"])
root_loc = outputs["joints"][..., 0, :].cpu() # (B, T, 3)
offset = init_trans - root_loc # It is a constant, no matter what the rotation is.
init_trans = (
torch.einsum("tij,btj->bti", R_c2w_sla, root_loc)
+ t_c2w_sla[None, :]
+ offset
)
data_world = {
"init_root_orient": init_rot, # (B, T, 3)
"init_hand_pose": data_out_init_hand_pose, # (B, T, 15, 3)
"init_trans": init_trans, # (B, T, 3)
"init_betas": data_out["init_betas"] # (B, T, 10)
}
return data_world
def filling_preprocess(item):
num_joints = 15
global_trans = item['trans'] # (2, seq_len, 3)
global_rot = item['rot'] #(2, seq_len, 3)
hand_pose = item['hand_pose'] # (2, seq_len, 45)
betas = item['betas'] # (2, seq_len, 10)
valid = item['valid'] # (2, seq_len)
N, T, _ = global_trans.shape
R_canonical2world_left_aa = torch.from_numpy(global_rot[0, 0])
R_canonical2world_right_aa = torch.from_numpy(global_rot[1, 0])
R_world2canonical_left = angle_axis_to_rotation_matrix(R_canonical2world_left_aa).t()
R_world2canonical_right = angle_axis_to_rotation_matrix(R_canonical2world_right_aa).t()
# transform left hand to canonical
hand_pose = hand_pose.reshape(N, T, num_joints, 3)
data_world_left = {
"init_trans": torch.from_numpy(global_trans[0:1]),
"init_root_orient": angle_axis_to_rotation_matrix(torch.from_numpy(global_rot[0:1])),
"init_hand_pose": angle_axis_to_rotation_matrix(torch.from_numpy(hand_pose[0:1])),
"init_betas": torch.from_numpy(betas[0:1]),
}
data_left_init_root_orient = rotation_matrix_to_angle_axis(data_world_left["init_root_orient"])
data_left_init_hand_pose = rotation_matrix_to_angle_axis(data_world_left["init_hand_pose"])
outputs = run_mano_left(data_world_left["init_trans"], data_left_init_root_orient, data_left_init_hand_pose, betas=data_world_left["init_betas"])
init_trans = data_world_left["init_trans"][0, 0] # (3,)
root_loc = outputs["joints"][0, 0, 0, :].cpu() # (3,)
offset = init_trans - root_loc # It is a constant, no matter what the rotation is.
t_world2canonical_left = -torch.einsum("ij,j->i", R_world2canonical_left, root_loc) - offset
R_world2canonical_left = R_world2canonical_left.repeat(T, 1, 1)
t_world2canonical_left = t_world2canonical_left.repeat(T, 1)
data_canonical_left = world2canonical_convert(R_world2canonical_left, t_world2canonical_left, data_world_left, "left")
# transform right hand to canonical
data_world_right = {
"init_trans": torch.from_numpy(global_trans[1:2]),
"init_root_orient": angle_axis_to_rotation_matrix(torch.from_numpy(global_rot[1:2])),
"init_hand_pose": angle_axis_to_rotation_matrix(torch.from_numpy(hand_pose[1:2])),
"init_betas": torch.from_numpy(betas[1:2]),
}
data_right_init_root_orient = rotation_matrix_to_angle_axis(data_world_right["init_root_orient"])
data_right_init_hand_pose = rotation_matrix_to_angle_axis(data_world_right["init_hand_pose"])
outputs = run_mano(data_world_right["init_trans"], data_right_init_root_orient, data_right_init_hand_pose, betas=data_world_right["init_betas"])
init_trans = data_world_right["init_trans"][0, 0] # (3,)
root_loc = outputs["joints"][0, 0, 0, :].cpu() # (3,)
offset = init_trans - root_loc # It is a constant, no matter what the rotation is.
t_world2canonical_right = -torch.einsum("ij,j->i", R_world2canonical_right, root_loc) - offset
R_world2canonical_right = R_world2canonical_right.repeat(T, 1, 1)
t_world2canonical_right = t_world2canonical_right.repeat(T, 1)
data_canonical_right = world2canonical_convert(R_world2canonical_right, t_world2canonical_right, data_world_right, "right")
# merge left and right canonical data
global_rot = torch.cat((data_canonical_left['init_root_orient'], data_canonical_right['init_root_orient']))
global_trans = torch.cat((data_canonical_left['init_trans'], data_canonical_right['init_trans'])).numpy()
# global_rot = angle_axis_to_quaternion(global_rot).numpy().reshape(N, T, 1, 4)
global_rot = global_rot.reshape(N, T, 1, 3).numpy()
hand_pose = hand_pose.reshape(N, T, 15, 3)
# hand_pose = angle_axis_to_quaternion(torch.from_numpy(hand_pose)).numpy()
# lerp and slerp
global_trans_lerped = linear_interpolation_nd(global_trans, valid)
betas_lerped = linear_interpolation_nd(betas, valid)
global_rot_slerped = slerp_interpolation_aa(global_rot, valid)
hand_pose_slerped = slerp_interpolation_aa(hand_pose, valid)
# convert to rot6d
global_rot_slerped_mat = angle_axis_to_rotation_matrix(torch.from_numpy(global_rot_slerped.reshape(N*T, -1)))
# global_rot_slerped_mat = quaternion_to_rotation_matrix(torch.from_numpy(global_rot_slerped.reshape(N*T, -1)))
global_rot_slerped_rot6d = rotmat_to_rot6d(global_rot_slerped_mat).reshape(N, T, -1).numpy()
hand_pose_slerped_mat = angle_axis_to_rotation_matrix(torch.from_numpy(hand_pose_slerped.reshape(N*T*num_joints, -1)))
# hand_pose_slerped_mat = quaternion_to_rotation_matrix(torch.from_numpy(hand_pose_slerped.reshape(N*T*num_joints, -1)))
hand_pose_slerped_rot6d = rotmat_to_rot6d(hand_pose_slerped_mat).reshape(N, T, -1).numpy()
# concat to (T, concat_dim)
global_pose_vec_input = np.concatenate((global_trans_lerped, betas_lerped, global_rot_slerped_rot6d, hand_pose_slerped_rot6d), axis=-1).transpose(1, 0, 2).reshape(T, -1)
R_canon2w_left = R_world2canonical_left.transpose(-1, -2)
t_canon2w_left = -torch.einsum("tij,tj->ti", R_canon2w_left, t_world2canonical_left)
R_canon2w_right = R_world2canonical_right.transpose(-1, -2)
t_canon2w_right = -torch.einsum("tij,tj->ti", R_canon2w_right, t_world2canonical_right)
transform_w_canon = {
"R_w2canon_left": R_world2canonical_left,
"t_w2canon_left": t_world2canonical_left,
"R_canon2w_left": R_canon2w_left,
"t_canon2w_left": t_canon2w_left,
"R_w2canon_right": R_world2canonical_right,
"t_w2canon_right": t_world2canonical_right,
"R_canon2w_right": R_canon2w_right,
"t_canon2w_right": t_canon2w_right,
}
return global_pose_vec_input, transform_w_canon
def custom_rot6d_to_rotmat(rot6d):
original_shape = rot6d.shape[:-1]
rot6d = rot6d.reshape(-1, 6)
mat = rot6d_to_rotmat(rot6d)
mat = mat.reshape(*original_shape, 3, 3)
return mat
def filling_postprocess(output, transform_w_canon):
# output = output.numpy()
output = output.permute(1, 0, 2) # (2, T, -1)
N, T, _ = output.shape
canon_trans = output[:, :, :3]
betas = output[:, :, 3:13]
canon_rot_rot6d = output[:, :, 13:19]
hand_pose_rot6d = output[:, :, 19:109].reshape(N, T, 15, 6)
canon_rot_mat = custom_rot6d_to_rotmat(canon_rot_rot6d)
hand_pose_mat = custom_rot6d_to_rotmat(hand_pose_rot6d)
data_canonical_left = {
"init_trans": canon_trans[[0], :, :],
"init_root_orient": canon_rot_mat[[0], :, :, :],
"init_hand_pose": hand_pose_mat[[0], :, :, :, :],
"init_betas": betas[[0], :, :]
}
data_canonical_right = {
"init_trans": canon_trans[[1], :, :],
"init_root_orient": canon_rot_mat[[1], :, :, :],
"init_hand_pose": hand_pose_mat[[1], :, :, :, :],
"init_betas": betas[[1], :, :]
}
R_canon2w_left = transform_w_canon['R_canon2w_left']
t_canon2w_left = transform_w_canon['t_canon2w_left']
R_canon2w_right = transform_w_canon['R_canon2w_right']
t_canon2w_right = transform_w_canon['t_canon2w_right']
world_left = world2canonical_convert(R_canon2w_left, t_canon2w_left, data_canonical_left, "left")
world_right = world2canonical_convert(R_canon2w_right, t_canon2w_right, data_canonical_right, "right")
global_rot = torch.cat((world_left['init_root_orient'], world_right['init_root_orient'])).numpy()
global_trans = torch.cat((world_left['init_trans'], world_right['init_trans'])).numpy()
pred_data = {
"trans": global_trans, # (2, T, 3)
"rot": global_rot, # (2, T, 3)
"hand_pose": rotation_matrix_to_angle_axis(hand_pose_mat).flatten(-2).numpy(), # (2, T, 45)
"betas": betas.numpy(), # (2, T, 10)
}
return pred_data
|