File size: 7,388 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import cv2
import numpy as np
import torch
import trimesh

import lib.vis.viewer as viewer_utils
from lib.vis.wham_tools.tools import checkerboard_geometry

def camera_marker_geometry(radius, height):
    vertices = np.array(
        [
            [-radius, -radius, 0],
            [radius, -radius, 0],
            [radius, radius, 0],
            [-radius, radius, 0],
            [0, 0, - height],
        ]
    )


    faces = np.array(
        [[0, 1, 2], [0, 2, 3], [1, 0, 4], [2, 1, 4], [3, 2, 4], [0, 3, 4],]
    )

    face_colors = np.array(
        [
            [0.5, 0.5, 0.5, 1.0],
            [0.5, 0.5, 0.5, 1.0],
            [0.0, 1.0, 0.0, 1.0],
            [1.0, 0.0, 0.0, 1.0],
            [0.0, 1.0, 0.0, 1.0],
            [1.0, 0.0, 0.0, 1.0],
        ]
    )
    return vertices, faces, face_colors


def run_vis2_on_video(res_dict, res_dict2, output_pth, focal_length, image_names, R_c2w=None, t_c2w=None):
    
    img0 = cv2.imread(image_names[0])
    height, width, _ = img0.shape

    world_mano = {}
    world_mano['vertices'] = res_dict['vertices']
    world_mano['faces'] = res_dict['faces']

    world_mano2 = {}
    world_mano2['vertices'] = res_dict2['vertices']
    world_mano2['faces'] = res_dict2['faces']

    vis_dict = {}
    color_idx = 0
    world_mano['vertices'] = world_mano['vertices']
    for _id, _verts in enumerate(world_mano['vertices']):
        verts = _verts.cpu().numpy() # T, N, 3
        body_faces = world_mano['faces']
        body_meshes = {
            "v3d": verts,
            "f3d": body_faces,
            "vc": None,
            "name": f"hand_{_id}",
            # "color": "pace-green",
            "color": "director-purple",
        }
        vis_dict[f"hand_{_id}"] = body_meshes
        color_idx += 1
    
    world_mano2['vertices'] = world_mano2['vertices']
    for _id, _verts in enumerate(world_mano2['vertices']):
        verts = _verts.cpu().numpy() # T, N, 3
        body_faces = world_mano2['faces']
        body_meshes = {
            "v3d": verts,
            "f3d": body_faces,
            "vc": None,
            "name": f"hand2_{_id}",
            # "color": "pace-blue",
            "color": "director-blue",
        }
        vis_dict[f"hand2_{_id}"] = body_meshes
        color_idx += 1
    
    v, f, vc, fc = checkerboard_geometry(length=100, c1=0, c2=0, up="z")
    v[:, 2] -= 2 # z plane
    gound_meshes = {
        "v3d": v,
        "f3d": f,
        "vc": vc,
        "name": "ground",
        "fc": fc,
        "color": -1,
    }
    vis_dict["ground"] = gound_meshes

    num_frames = len(world_mano['vertices'][_id])
    Rt = np.zeros((num_frames, 3, 4))
    Rt[:, :3, :3] = R_c2w[:num_frames]
    Rt[:, :3, 3] = t_c2w[:num_frames]

    verts, faces, face_colors = camera_marker_geometry(0.05, 0.1)
    verts = np.einsum("tij,nj->tni", Rt[:, :3, :3], verts) + Rt[:, None, :3, 3]
    camera_meshes = {
        "v3d": verts,
        "f3d": faces,
        "vc": None,
        "name": "camera",
        "fc": face_colors,
        "color": -1,
    }
    vis_dict["camera"] = camera_meshes

    side_source = torch.tensor([0.463, -0.478, 2.456])
    side_target = torch.tensor([0.026, -0.481, -3.184])
    up = torch.tensor([1.0, 0.0, 0.0])
    view_camera = lookat_matrix(side_source, side_target, up)
    viewer_Rt = np.tile(view_camera[:3, :4], (num_frames, 1, 1))

    meshes = viewer_utils.construct_viewer_meshes(
        vis_dict, draw_edges=False, flat_shading=False
    )

    vis_h, vis_w = (1000, 1000)
    K = np.array(
        [
            [1000, 0, vis_w / 2],
            [0, 1000, vis_h / 2],
            [0, 0, 1]
        ]
    )
    
    data = viewer_utils.ViewerData(viewer_Rt, K, vis_w, vis_h)
    batch = (meshes, data)

    viewer = viewer_utils.ARCTICViewer(interactive=True, size=(vis_w, vis_h))
    viewer.render_seq(batch, out_folder=os.path.join(output_pth, 'aitviewer'))

def run_vis2_on_video_cam(res_dict, res_dict2, output_pth, focal_length, image_names, R_w2c=None, t_w2c=None):
    
    img0 = cv2.imread(image_names[0])
    height, width, _ = img0.shape

    world_mano = {}
    world_mano['vertices'] = res_dict['vertices']
    world_mano['faces'] = res_dict['faces']

    world_mano2 = {}
    world_mano2['vertices'] = res_dict2['vertices']
    world_mano2['faces'] = res_dict2['faces']

    vis_dict = {}
    color_idx = 0
    world_mano['vertices'] = world_mano['vertices']
    for _id, _verts in enumerate(world_mano['vertices']):
        verts = _verts.cpu().numpy() # T, N, 3
        body_faces = world_mano['faces']
        body_meshes = {
            "v3d": verts,
            "f3d": body_faces,
            "vc": None,
            "name": f"hand_{_id}",
            # "color": "pace-green",
            "color": "director-purple",
        }
        vis_dict[f"hand_{_id}"] = body_meshes
        color_idx += 1
    
    world_mano2['vertices'] = world_mano2['vertices']
    for _id, _verts in enumerate(world_mano2['vertices']):
        verts = _verts.cpu().numpy() # T, N, 3
        body_faces = world_mano2['faces']
        body_meshes = {
            "v3d": verts,
            "f3d": body_faces,
            "vc": None,
            "name": f"hand2_{_id}",
            # "color": "pace-blue",
            "color": "director-blue",
        }
        vis_dict[f"hand2_{_id}"] = body_meshes
        color_idx += 1

    meshes = viewer_utils.construct_viewer_meshes(
        vis_dict, draw_edges=False, flat_shading=False
    )

    num_frames = len(world_mano['vertices'][_id])
    Rt = np.zeros((num_frames, 3, 4))
    Rt[:, :3, :3] = R_w2c[:num_frames]
    Rt[:, :3, 3] = t_w2c[:num_frames]

    cols, rows = (width, height)
    K = np.array(
        [
            [focal_length, 0, width / 2],
            [0, focal_length, height / 2],
            [0, 0, 1]
        ]
    )
    vis_h = height
    vis_w = width

    data = viewer_utils.ViewerData(Rt, K, cols, rows, imgnames=image_names)
    batch = (meshes, data)

    viewer = viewer_utils.ARCTICViewer(interactive=True, size=(vis_w, vis_h))
    viewer.render_seq(batch, out_folder=os.path.join(output_pth, 'aitviewer'))

def lookat_matrix(source_pos, target_pos, up):
    """
    IMPORTANT: USES RIGHT UP BACK XYZ CONVENTION
    :param source_pos (*, 3)
    :param target_pos (*, 3)
    :param up (3,)
    """
    *dims, _ = source_pos.shape
    up = up.reshape(*(1,) * len(dims), 3)
    up = up / torch.linalg.norm(up, dim=-1, keepdim=True)
    back = normalize(target_pos - source_pos)
    right = normalize(torch.linalg.cross(up, back))
    up = normalize(torch.linalg.cross(back, right))
    R = torch.stack([right, up, back], dim=-1)
    return make_4x4_pose(R, source_pos)

def make_4x4_pose(R, t):
    """
    :param R (*, 3, 3)
    :param t (*, 3)
    return (*, 4, 4)
    """
    dims = R.shape[:-2]
    pose_3x4 = torch.cat([R, t.view(*dims, 3, 1)], dim=-1)
    bottom = (
        torch.tensor([0, 0, 0, 1], device=R.device)
        .reshape(*(1,) * len(dims), 1, 4)
        .expand(*dims, 1, 4)
    )
    return torch.cat([pose_3x4, bottom], dim=-2)

def normalize(x):
    return x / torch.linalg.norm(x, dim=-1, keepdim=True)

def save_mesh_to_obj(vertices, faces, file_path):
    # 创建一个 Trimesh 对象
    mesh = trimesh.Trimesh(vertices=vertices, faces=faces)
    
    # 导出为 .obj 文件
    mesh.export(file_path)
    print(f"Mesh saved to {file_path}")