File size: 9,454 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""
This file contains functions that are used to perform data augmentation.
"""
import torch
import numpy as np
from skimage.transform import rotate, resize
import cv2
from torchvision.transforms import Normalize, ToTensor, Compose

from lib.core import constants

def get_normalization():
    normalize_img = Compose([ToTensor(),
                            Normalize(mean=constants.IMG_NORM_MEAN, 
                                      std=constants.IMG_NORM_STD)
                            ])
    return normalize_img

def get_transform(center, scale, res, rot=0):
    """Generate transformation matrix."""
    h = 200 * scale + 1e-6
    t = np.zeros((3, 3))
    t[0, 0] = float(res[1]) / h
    t[1, 1] = float(res[0]) / h
    t[0, 2] = res[1] * (-float(center[0]) / h + .5)
    t[1, 2] = res[0] * (-float(center[1]) / h + .5)
    t[2, 2] = 1
    if not rot == 0:
        rot = -rot # To match direction of rotation from cropping
        rot_mat = np.zeros((3,3))
        rot_rad = rot * np.pi / 180
        sn,cs = np.sin(rot_rad), np.cos(rot_rad)
        rot_mat[0,:2] = [cs, -sn]
        rot_mat[1,:2] = [sn, cs]
        rot_mat[2,2] = 1
        # Need to rotate around center
        t_mat = np.eye(3)
        t_mat[0,2] = -res[1]/2
        t_mat[1,2] = -res[0]/2
        t_inv = t_mat.copy()
        t_inv[:2,2] *= -1
        t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t)))
    return t

def transform(pt, center, scale, res, invert=0, rot=0, asint=True):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    new_pt = np.array([pt[0]-1, pt[1]-1, 1.]).T
    new_pt = np.dot(t, new_pt)

    if asint:
        return new_pt[:2].astype(int)+1
    else:
        return new_pt[:2]+1

def transform_pts(pts, center, scale, res, invert=0, rot=0, asint=True):
    """Transform pixel location to different reference."""
    t = get_transform(center, scale, res, rot=rot)
    if invert:
        t = np.linalg.inv(t)
    pts = np.concatenate((pts, np.ones_like(pts)[:, [0]]), axis=-1)
    new_pt = pts.T
    new_pt = np.dot(t, new_pt)

    if asint:
        return new_pt[:2, :].T.astype(int)
    else:
        return new_pt[:2, :].T

def crop(img, center, scale, res, rot=0):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
    # Bottom right point
    br = np.array(transform([res[0]+1, 
                             res[1]+1], center, scale, res, invert=1))-1

    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
    if not rot == 0:
        ul -= pad
        br += pad

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(new_shape)
    

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])
    try:
        new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], 
                                                        old_x[0]:old_x[1]]
    except:
        print("invlid bbox, fill with 0")

    if not rot == 0:
        # Remove padding
        new_img = rotate(new_img, rot)
        new_img = new_img[pad:-pad, pad:-pad]

    new_img = resize(new_img, res)
    return new_img

def crop_j2d(j2d, center, scale, res, rot=0):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    # crop_j2d = np.array(transform_pts(j2d, center, scale, res, invert=0))
    b = scale * 200
    points2d = j2d - (center - b/2)
    points2d = points2d * (res[0] / b)
    
    return points2d


def crop_crop(img, center, scale, res, rot=0):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
    # Bottom right point
    br = np.array(transform([res[0]+1, 
                             res[1]+1], center, scale, res, invert=1))-1

    # Padding so that when rotated proper amount of context is included
    pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2)
    if not rot == 0:
        ul -= pad
        br += pad

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(new_shape)
    

    if new_img.shape[0] > img.shape[0]:
        p = (new_img.shape[0] - img.shape[0]) / 2
        p = int(p)
        new_img = cv2.copyMakeBorder(img, p, p, p, p, cv2.BORDER_REPLICATE)

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])
    new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], 
                                                        old_x[0]:old_x[1]]

    if not rot == 0:
        # Remove padding
        new_img = rotate(new_img, rot)
        new_img = new_img[pad:-pad, pad:-pad]

    new_img = resize(new_img, res)
    return new_img

def uncrop(img, center, scale, orig_shape, rot=0, is_rgb=True):
    """'Undo' the image cropping/resizing.
    This function is used when evaluating mask/part segmentation.
    """
    res = img.shape[:2]
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
    # Bottom right point
    br = np.array(transform([res[0]+1,res[1]+1], center, scale, res, invert=1))-1
    # size of cropped image
    crop_shape = [br[1] - ul[1], br[0] - ul[0]]

    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.zeros(orig_shape, dtype=np.uint8)
    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(orig_shape[1], br[0])
    old_y = max(0, ul[1]), min(orig_shape[0], br[1])
    img = resize(img, crop_shape, interp='nearest')
    new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1], new_x[0]:new_x[1]]
    return new_img

def rot_aa(aa, rot):
    """Rotate axis angle parameters."""
    # pose parameters
    R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
                  [np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
                  [0, 0, 1]])
    # find the rotation of the body in camera frame
    per_rdg, _ = cv2.Rodrigues(aa)
    # apply the global rotation to the global orientation
    resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
    aa = (resrot.T)[0]
    return aa

def flip_img(img):
    """Flip rgb images or masks.
    channels come last, e.g. (256,256,3).
    """
    img = np.fliplr(img)
    return img

def flip_kp(kp):
    """Flip keypoints."""
    if len(kp) == 24:
        flipped_parts = constants.J24_FLIP_PERM
    elif len(kp) == 49:
        flipped_parts = constants.J49_FLIP_PERM
    kp = kp[flipped_parts]
    kp[:,0] = - kp[:,0]
    return kp

def flip_pose(pose):
    """Flip pose.
    The flipping is based on SMPL parameters.
    """
    flipped_parts = constants.SMPL_POSE_FLIP_PERM
    pose = pose[flipped_parts]
    # we also negate the second and the third dimension of the axis-angle
    pose[1::3] = -pose[1::3]
    pose[2::3] = -pose[2::3]
    return pose


def crop_img(img, center, scale, res, val=255):
    """Crop image according to the supplied bounding box."""
    # Upper left point
    ul = np.array(transform([1, 1], center, scale, res, invert=1))-1
    # Bottom right point
    br = np.array(transform([res[0]+1, 
                             res[1]+1], center, scale, res, invert=1))-1
    
    new_shape = [br[1] - ul[1], br[0] - ul[0]]
    if len(img.shape) > 2:
        new_shape += [img.shape[2]]
    new_img = np.ones(new_shape) * val

    # Range to fill new array
    new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
    new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
    # Range to sample from original image
    old_x = max(0, ul[0]), min(len(img[0]), br[0])
    old_y = max(0, ul[1]), min(len(img), br[1])
    new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], 
                                                        old_x[0]:old_x[1]]
    new_img = resize(new_img, res)
    return new_img


def boxes_2_cs(boxes):
    x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
    w, h = x2-x1, y2-y1
    cx, cy = x1+w/2, y1+h/2
    size = np.stack([w, h]).max(axis=0)
    
    centers = np.stack([cx, cy], axis=1)
    scales = size / 200
    return centers, scales


def box_2_cs(box):
    x1,y1,x2,y2 = box[:4].int().tolist()

    w, h = x2-x1, y2-y1
    cx, cy = x1+w/2, y1+h/2
    size = max(w, h)

    center = [cx, cy]
    scale = size / 200
    return center, scale


def est_intrinsics(img_shape):
    h, w, c = img_shape
    img_center = torch.tensor([w/2., h/2.]).float()
    img_focal = torch.tensor(np.sqrt(h**2 + w**2)).float()
    return img_center, img_focal