File size: 22,663 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import einops
import numpy as np
import torch
import pytorch_lightning as pl
from typing import Dict
from torchvision.utils import make_grid

from tqdm import tqdm
from yacs.config import CfgNode

from lib.datasets.track_dataset import TrackDatasetEval
from lib.models.modules import MANOTransformerDecoderHead, temporal_attention
from hawor.utils.pylogger import get_pylogger
from hawor.utils.render_openpose import render_openpose
from lib.utils.geometry import rot6d_to_rotmat_hmr2 as rot6d_to_rotmat
from lib.utils.geometry import perspective_projection
from hawor.utils.rotation import angle_axis_to_rotation_matrix
from torch.utils.data import default_collate

from .backbones import create_backbone
from .mano_wrapper import MANO


log = get_pylogger(__name__)
idx = 0

class HAWOR(pl.LightningModule):

    def __init__(self, cfg: CfgNode):
        """
        Setup HAWOR model
        Args:
            cfg (CfgNode): Config file as a yacs CfgNode
        """
        super().__init__()

        # Save hyperparameters
        self.save_hyperparameters(logger=False, ignore=['init_renderer'])

        self.cfg = cfg
        self.crop_size = cfg.MODEL.IMAGE_SIZE
        self.seq_len = 16
        self.pose_num = 16
        self.pose_dim = 6 # rot6d representation
        self.box_info_dim = 3

        # Create backbone feature extractor
        self.backbone = create_backbone(cfg)
        try:
            if cfg.MODEL.BACKBONE.get('PRETRAINED_WEIGHTS', None):
                whole_state_dict = torch.load(cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS, map_location='cpu')['state_dict']
                backbone_state_dict = {}
                for key in whole_state_dict:
                    if key[:9] == 'backbone.':
                        backbone_state_dict[key[9:]] = whole_state_dict[key]
                self.backbone.load_state_dict(backbone_state_dict)
                print(f'Loaded backbone weights from {cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS}')
                for param in self.backbone.parameters():
                    param.requires_grad = False
            else:
                print('WARNING: init backbone from sratch !!!')
        except:
            print('WARNING: init backbone from sratch !!!')

        # Space-time memory
        if cfg.MODEL.ST_MODULE: 
            hdim = cfg.MODEL.ST_HDIM
            nlayer = cfg.MODEL.ST_NLAYER
            self.st_module = temporal_attention(in_dim=1280+3, 
                                                out_dim=1280,
                                                hdim=hdim,
                                                nlayer=nlayer,
                                                residual=True)
            print(f'Using Temporal Attention space-time: {nlayer} layers {hdim} dim.')
        else:
            self.st_module = None

        # Motion memory
        if cfg.MODEL.MOTION_MODULE:
            hdim = cfg.MODEL.MOTION_HDIM
            nlayer = cfg.MODEL.MOTION_NLAYER

            self.motion_module = temporal_attention(in_dim=self.pose_num * self.pose_dim + self.box_info_dim, 
                                                    out_dim=self.pose_num * self.pose_dim,
                                                    hdim=hdim,
                                                    nlayer=nlayer,
                                                    residual=False)
            print(f'Using Temporal Attention motion layer: {nlayer} layers {hdim} dim.')
        else:
            self.motion_module = None

        # Create MANO head
        # self.mano_head = build_mano_head(cfg)
        self.mano_head = MANOTransformerDecoderHead(cfg)

        
        # default open torch compile
        if cfg.MODEL.BACKBONE.get('TORCH_COMPILE', 0): 
            log.info("Model will use torch.compile")
            self.backbone = torch.compile(self.backbone)
            self.mano_head = torch.compile(self.mano_head)

        # Define loss functions
        # self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1')
        # self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1')
        # self.mano_parameter_loss = ParameterLoss()

        # Instantiate MANO model
        mano_cfg = {k.lower(): v for k,v in dict(cfg.MANO).items()}
        self.mano = MANO(**mano_cfg)

        # Buffer that shows whetheer we need to initialize ActNorm layers
        self.register_buffer('initialized', torch.tensor(False))

        # Disable automatic optimization since we use adversarial training
        self.automatic_optimization = False

        if cfg.MODEL.get('LOAD_WEIGHTS', None):
            whole_state_dict = torch.load(cfg.MODEL.LOAD_WEIGHTS, map_location='cpu')['state_dict']
            self.load_state_dict(whole_state_dict, strict=True)
            print(f"load {cfg.MODEL.LOAD_WEIGHTS}")

    def get_parameters(self):
        all_params = list(self.mano_head.parameters())
        if not self.st_module is None:
            all_params += list(self.st_module.parameters())
        if not self.motion_module is None:
            all_params += list(self.motion_module.parameters())
        all_params += list(self.backbone.parameters())
        return all_params

    def configure_optimizers(self) -> torch.optim.Optimizer:
        """
        Setup model and distriminator Optimizers
        Returns:
            Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: Model and discriminator optimizers
        """
        param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}]

        optimizer = torch.optim.AdamW(params=param_groups,
                                        # lr=self.cfg.TRAIN.LR,
                                        weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
        return optimizer

    def forward_step(self, batch: Dict, train: bool = False) -> Dict:
        """
        Run a forward step of the network
        Args:
            batch (Dict): Dictionary containing batch data
            train (bool): Flag indicating whether it is training or validation mode
        Returns:
            Dict: Dictionary containing the regression output
        """

        image  = batch['img'].flatten(0, 1)
        center = batch['center'].flatten(0, 1)
        scale  = batch['scale'].flatten(0, 1)
        img_focal = batch['img_focal'].flatten(0, 1)
        img_center = batch['img_center'].flatten(0, 1)
        bn = len(image)

        # estimate focal length, and bbox
        bbox_info = self.bbox_est(center, scale, img_focal, img_center)

        # backbone
        feature = self.backbone(image[:,:,:,32:-32])
        feature = feature.float()

        # space-time module
        if self.st_module is not None:
            bb = einops.repeat(bbox_info, 'b c -> b c h w', h=16, w=12)
            feature = torch.cat([feature, bb], dim=1)

            feature = einops.rearrange(feature, '(b t) c h w -> (b h w) t c', t=16)
            feature = self.st_module(feature)
            feature = einops.rearrange(feature, '(b h w) t c -> (b t) c h w', h=16, w=12)

        # smpl_head: transformer + smpl
        # pred_mano_params, pred_cam, pred_mano_params_list = self.mano_head(feature)
        # pred_shape = pred_mano_params_list['pred_shape']
        # pred_pose = pred_mano_params_list['pred_pose']
        pred_pose, pred_shape, pred_cam = self.mano_head(feature)
        pred_rotmat_0 = rot6d_to_rotmat(pred_pose).reshape(-1, self.pose_num, 3, 3)

        # smpl motion module
        if self.motion_module is not None:
            bb = einops.rearrange(bbox_info, '(b t) c -> b t c', t=16)
            pred_pose = einops.rearrange(pred_pose, '(b t) c -> b t c', t=16)
            pred_pose = torch.cat([pred_pose, bb], dim=2)

            pred_pose = self.motion_module(pred_pose)
            pred_pose = einops.rearrange(pred_pose, 'b t c -> (b t) c')

        out = {}
        if 'do_flip' in batch:
            pred_cam[..., 1] *= -1
            center[..., 0] = img_center[..., 0]*2 - center[..., 0] - 1 
        out['pred_cam'] = pred_cam
        out['pred_pose'] = pred_pose
        out['pred_shape'] = pred_shape
        out['pred_rotmat'] = rot6d_to_rotmat(out['pred_pose']).reshape(-1, self.pose_num, 3, 3)
        out['pred_rotmat_0'] = pred_rotmat_0
        
        s_out = self.mano.query(out)
        j3d = s_out.joints
        j2d = self.project(j3d, out['pred_cam'], center, scale, img_focal, img_center)
        j2d = j2d / self.crop_size - 0.5 # norm to [-0.5, 0.5]

        trans_full = self.get_trans(out['pred_cam'], center, scale, img_focal, img_center)
        out['trans_full'] = trans_full

        output = {
            'pred_mano_params': {
                'global_orient': out['pred_rotmat'][:, :1].clone(),
                'hand_pose': out['pred_rotmat'][:, 1:].clone(),
                'betas': out['pred_shape'].clone(),
            },
            'pred_keypoints_3d': j3d.clone(),
            'pred_keypoints_2d': j2d.clone(),
            'out': out,
        }
        # print(output)
        # output['gt_project_j2d'] = self.project(batch['gt_j3d_wo_trans'].clone().flatten(0,1), out['pred_cam'], center, scale, img_focal, img_center)
        # output['gt_project_j2d'] = output['gt_project_j2d'] / self.crop_size - 0.5
        

        return output

    def compute_loss(self, batch: Dict, output: Dict, train: bool = True) -> torch.Tensor:
        """
        Compute losses given the input batch and the regression output
        Args:
            batch (Dict): Dictionary containing batch data
            output (Dict): Dictionary containing the regression output
            train (bool): Flag indicating whether it is training or validation mode
        Returns:
            torch.Tensor : Total loss for current batch
        """

        pred_mano_params = output['pred_mano_params']
        pred_keypoints_2d = output['pred_keypoints_2d']
        pred_keypoints_3d = output['pred_keypoints_3d']


        batch_size = pred_mano_params['hand_pose'].shape[0]
        device = pred_mano_params['hand_pose'].device
        dtype = pred_mano_params['hand_pose'].dtype

        # Get annotations
        gt_keypoints_2d = batch['gt_cam_j2d'].flatten(0, 1)
        gt_keypoints_2d = torch.cat([gt_keypoints_2d, torch.ones(*gt_keypoints_2d.shape[:-1], 1, device=gt_keypoints_2d.device)], dim=-1)
        gt_keypoints_3d = batch['gt_j3d_wo_trans'].flatten(0, 1)
        gt_keypoints_3d = torch.cat([gt_keypoints_3d, torch.ones(*gt_keypoints_3d.shape[:-1], 1, device=gt_keypoints_3d.device)], dim=-1)
        pose_gt = batch['gt_cam_full_pose'].flatten(0, 1).reshape(-1, 16, 3)
        rotmat_gt = angle_axis_to_rotation_matrix(pose_gt)
        gt_mano_params = {
            'global_orient': rotmat_gt[:, :1],
            'hand_pose': rotmat_gt[:, 1:],
            'betas': batch['gt_cam_betas'],
        }

        # Compute 3D keypoint loss
        loss_keypoints_2d = self.keypoint_2d_loss(pred_keypoints_2d, gt_keypoints_2d)
        loss_keypoints_3d = self.keypoint_3d_loss(pred_keypoints_3d, gt_keypoints_3d, pelvis_id=0)

        # to avoid nan
        loss_keypoints_2d = torch.nan_to_num(loss_keypoints_2d)

        # Compute loss on MANO parameters
        loss_mano_params = {}
        for k, pred in pred_mano_params.items():
            gt = gt_mano_params[k].view(batch_size, -1)
            loss_mano_params[k] = self.mano_parameter_loss(pred.reshape(batch_size, -1), gt.reshape(batch_size, -1))

        loss = self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'] * loss_keypoints_3d+\
               self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'] * loss_keypoints_2d+\
               sum([loss_mano_params[k] * self.cfg.LOSS_WEIGHTS[k.upper()] for k in loss_mano_params])

        losses = dict(loss=loss.detach(),
                      loss_keypoints_2d=loss_keypoints_2d.detach() * self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'],
                      loss_keypoints_3d=loss_keypoints_3d.detach() * self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'])

        for k, v in loss_mano_params.items():
            losses['loss_' + k] = v.detach() * self.cfg.LOSS_WEIGHTS[k.upper()]

        output['losses'] = losses

        return loss

    # Tensoroboard logging should run from first rank only
    @pl.utilities.rank_zero.rank_zero_only
    def tensorboard_logging(self, batch: Dict, output: Dict, step_count: int, train: bool = True, write_to_summary_writer: bool = True, render_log: bool = True) -> None:
        """
        Log results to Tensorboard
        Args:
            batch (Dict): Dictionary containing batch data
            output (Dict): Dictionary containing the regression output
            step_count (int): Global training step count
            train (bool): Flag indicating whether it is training or validation mode
        """

        mode = 'train' if train else 'val'
        batch_size = output['pred_keypoints_2d'].shape[0]
        images = batch['img'].flatten(0,1)
        images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1,3,1,1)
        images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1,3,1,1)

        losses = output['losses']
        if write_to_summary_writer:
            summary_writer = self.logger.experiment
            for loss_name, val in losses.items():
                summary_writer.add_scalar(mode +'/' + loss_name, val.detach().item(), step_count)
        
        if render_log:
            gt_keypoints_2d = batch['gt_cam_j2d'].flatten(0,1).clone()
            pred_keypoints_2d = output['pred_keypoints_2d'].clone().detach().reshape(batch_size, -1, 2)
            gt_project_j2d = pred_keypoints_2d
            # gt_project_j2d = output['gt_project_j2d'].clone().detach().reshape(batch_size, -1, 2)

            num_images = 4
            skip=16

            predictions = self.visualize_tensorboard(images[:num_images*skip:skip].cpu().numpy(),
                                                pred_keypoints_2d[:num_images*skip:skip].cpu().numpy(),
                                                gt_project_j2d[:num_images*skip:skip].cpu().numpy(),
                                                gt_keypoints_2d[:num_images*skip:skip].cpu().numpy(),
                                                )
            summary_writer.add_image('%s/predictions' % mode, predictions, step_count)
    

    def forward(self, batch: Dict) -> Dict:
        """
        Run a forward step of the network in val mode
        Args:
            batch (Dict): Dictionary containing batch data
        Returns:
            Dict: Dictionary containing the regression output
        """
        return self.forward_step(batch, train=False)

    def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict:
        """
        Run a full training step
        Args:
            joint_batch (Dict): Dictionary containing image and mocap batch data
            batch_idx (int): Unused.
            batch_idx (torch.Tensor): Unused.
        Returns:
            Dict: Dictionary containing regression output.
        """
        batch = joint_batch['img']
        optimizer = self.optimizers(use_pl_optimizer=True)

        batch_size = batch['img'].shape[0]
        output = self.forward_step(batch, train=True)
        # pred_mano_params = output['pred_mano_params']
        loss = self.compute_loss(batch, output, train=True)
        
        # Error if Nan
        if torch.isnan(loss):
            raise ValueError('Loss is NaN')

        optimizer.zero_grad()
        self.manual_backward(loss)
        # Clip gradient
        if self.cfg.TRAIN.get('GRAD_CLIP_VAL', 0) > 0:
            gn = torch.nn.utils.clip_grad_norm_(self.get_parameters(), self.cfg.TRAIN.GRAD_CLIP_VAL, error_if_nonfinite=True)
            self.log('train/grad_norm', gn, on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=batch_size)
        optimizer.step()
        
        # if self.global_step > 0 and self.global_step % self.cfg.GENERAL.LOG_STEPS == 0:
        if self.global_step > 0 and self.global_step % 100 == 0:
            self.tensorboard_logging(batch, output, self.global_step, train=True, render_log=self.cfg.TRAIN.get("RENDER_LOG", True))

        self.log('train/loss', output['losses']['loss'], on_step=True, on_epoch=True, prog_bar=True, logger=False, batch_size=batch_size)

        return output

    def inference(self, imgfiles, boxes, img_focal, img_center, device='cuda', do_flip=False):
        db = TrackDatasetEval(imgfiles, boxes, img_focal=img_focal, 
                        img_center=img_center, normalization=True, dilate=1.2, do_flip=do_flip)

        # Results
        pred_cam = []
        pred_pose = []
        pred_shape = []
        pred_rotmat = []
        pred_trans = []

        # To-do: efficient implementation with batch
        items = []
        for i in tqdm(range(len(db))):
            item = db[i]
            items.append(item)

            # padding to 16
            if i == len(db) - 1 and len(db) % 16 != 0:
                pad = 16 - len(db) % 16
                for _ in range(pad):
                    items.append(item)

            if len(items) < 16:
                continue
            elif len(items) == 16:
                batch = default_collate(items)
                items = []
            else:
                raise NotImplementedError

            with torch.no_grad():
                batch = {k: v.to(device).unsqueeze(0) for k, v in batch.items() if type(v)==torch.Tensor}
                # for image_i in range(16):
                #     hawor_input_cv2 = vis_tensor_cv2(batch['img'][:, image_i])
                #     cv2.imwrite(f'debug_vis_model.png', hawor_input_cv2)
                #     print("vis")
                output = self.forward(batch)
                out = output['out']

            if i == len(db) - 1 and len(db) % 16 != 0:
                out = {k:v[:len(db) % 16] for k,v in out.items()}
            else:
                out = {k:v for k,v in out.items()}
                
            pred_cam.append(out['pred_cam'].cpu())
            pred_pose.append(out['pred_pose'].cpu())
            pred_shape.append(out['pred_shape'].cpu())
            pred_rotmat.append(out['pred_rotmat'].cpu())
            pred_trans.append(out['trans_full'].cpu())


        results = {'pred_cam': torch.cat(pred_cam),
                'pred_pose': torch.cat(pred_pose),
                'pred_shape': torch.cat(pred_shape),
                'pred_rotmat': torch.cat(pred_rotmat),
                'pred_trans': torch.cat(pred_trans),
                'img_focal': img_focal,
                'img_center': img_center}
        
        return results

    def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx=0) -> Dict:
        """
        Run a validation step and log to Tensorboard
        Args:
            batch (Dict): Dictionary containing batch data
            batch_idx (int): Unused.
        Returns:
            Dict: Dictionary containing regression output.
        """
        # batch_size = batch['img'].shape[0]
        output = self.forward_step(batch, train=False)
        loss = self.compute_loss(batch, output, train=False)
        output['loss'] = loss
        self.tensorboard_logging(batch, output, self.global_step, train=False)

        return output
    
    def visualize_tensorboard(self, images, pred_keypoints, gt_project_j2d, gt_keypoints):
        pred_keypoints = 256 * (pred_keypoints + 0.5)
        gt_keypoints = 256 * (gt_keypoints + 0.5)
        gt_project_j2d = 256 * (gt_project_j2d + 0.5)
        pred_keypoints = np.concatenate((pred_keypoints, np.ones_like(pred_keypoints)[:, :, [0]]), axis=-1)
        gt_keypoints = np.concatenate((gt_keypoints, np.ones_like(gt_keypoints)[:, :, [0]]), axis=-1)
        gt_project_j2d = np.concatenate((gt_project_j2d, np.ones_like(gt_project_j2d)[:, :, [0]]), axis=-1)
        images_np = np.transpose(images, (0,2,3,1))
        rend_imgs = []
        for i in range(images_np.shape[0]):
            pred_keypoints_img = render_openpose(255 * images_np[i].copy(), pred_keypoints[i]) / 255
            gt_project_j2d_img = render_openpose(255 * images_np[i].copy(), gt_project_j2d[i]) / 255
            gt_keypoints_img = render_openpose(255*images_np[i].copy(), gt_keypoints[i]) / 255
            rend_imgs.append(torch.from_numpy(images[i]))
            rend_imgs.append(torch.from_numpy(pred_keypoints_img).permute(2,0,1))
            rend_imgs.append(torch.from_numpy(gt_project_j2d_img).permute(2,0,1))
            rend_imgs.append(torch.from_numpy(gt_keypoints_img).permute(2,0,1))
        rend_imgs = make_grid(rend_imgs, nrow=4, padding=2)
        return rend_imgs

    def project(self, points, pred_cam, center, scale, img_focal, img_center, return_full=False):

        trans_full = self.get_trans(pred_cam, center, scale, img_focal, img_center)

        # Projection in full frame image coordinate
        points = points + trans_full
        points2d_full = perspective_projection(points, rotation=None, translation=None,
                        focal_length=img_focal, camera_center=img_center)

        # Adjust projected points to crop image coordinate
        # (s.t. 1. we can calculate loss in crop image easily
        #       2. we can query its pixel in the crop
        #  )
        b = scale * 200
        points2d = points2d_full - (center - b[:,None]/2)[:,None,:]
        points2d = points2d * (self.crop_size / b)[:,None,None]

        if return_full:
            return points2d_full, points2d
        else:
            return points2d
        
    def get_trans(self, pred_cam, center, scale, img_focal, img_center):
        b      = scale * 200
        cx, cy = center[:,0], center[:,1]            # center of crop
        s, tx, ty = pred_cam.unbind(-1)

        img_cx, img_cy = img_center[:,0], img_center[:,1]  # center of original image
        
        bs = b*s
        tx_full = tx + 2*(cx-img_cx)/bs
        ty_full = ty + 2*(cy-img_cy)/bs
        tz_full = 2*img_focal/bs

        trans_full = torch.stack([tx_full, ty_full, tz_full], dim=-1)
        trans_full = trans_full.unsqueeze(1)

        return trans_full
    
    def bbox_est(self, center, scale, img_focal, img_center):
        # Original image center
        img_cx, img_cy = img_center[:,0], img_center[:,1]

        # Implement CLIFF (Li et al.) bbox feature
        cx, cy, b = center[:, 0], center[:, 1], scale * 200
        bbox_info = torch.stack([cx - img_cx, cy - img_cy, b], dim=-1)
        bbox_info[:, :2] = bbox_info[:, :2] / img_focal.unsqueeze(-1) * 2.8 
        bbox_info[:, 2] = (bbox_info[:, 2] - 0.24 * img_focal) / (0.06 * img_focal)  

        return bbox_info