Spaces:
Running
Running
File size: 22,663 Bytes
5f028d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
import einops
import numpy as np
import torch
import pytorch_lightning as pl
from typing import Dict
from torchvision.utils import make_grid
from tqdm import tqdm
from yacs.config import CfgNode
from lib.datasets.track_dataset import TrackDatasetEval
from lib.models.modules import MANOTransformerDecoderHead, temporal_attention
from hawor.utils.pylogger import get_pylogger
from hawor.utils.render_openpose import render_openpose
from lib.utils.geometry import rot6d_to_rotmat_hmr2 as rot6d_to_rotmat
from lib.utils.geometry import perspective_projection
from hawor.utils.rotation import angle_axis_to_rotation_matrix
from torch.utils.data import default_collate
from .backbones import create_backbone
from .mano_wrapper import MANO
log = get_pylogger(__name__)
idx = 0
class HAWOR(pl.LightningModule):
def __init__(self, cfg: CfgNode):
"""
Setup HAWOR model
Args:
cfg (CfgNode): Config file as a yacs CfgNode
"""
super().__init__()
# Save hyperparameters
self.save_hyperparameters(logger=False, ignore=['init_renderer'])
self.cfg = cfg
self.crop_size = cfg.MODEL.IMAGE_SIZE
self.seq_len = 16
self.pose_num = 16
self.pose_dim = 6 # rot6d representation
self.box_info_dim = 3
# Create backbone feature extractor
self.backbone = create_backbone(cfg)
try:
if cfg.MODEL.BACKBONE.get('PRETRAINED_WEIGHTS', None):
whole_state_dict = torch.load(cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS, map_location='cpu')['state_dict']
backbone_state_dict = {}
for key in whole_state_dict:
if key[:9] == 'backbone.':
backbone_state_dict[key[9:]] = whole_state_dict[key]
self.backbone.load_state_dict(backbone_state_dict)
print(f'Loaded backbone weights from {cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS}')
for param in self.backbone.parameters():
param.requires_grad = False
else:
print('WARNING: init backbone from sratch !!!')
except:
print('WARNING: init backbone from sratch !!!')
# Space-time memory
if cfg.MODEL.ST_MODULE:
hdim = cfg.MODEL.ST_HDIM
nlayer = cfg.MODEL.ST_NLAYER
self.st_module = temporal_attention(in_dim=1280+3,
out_dim=1280,
hdim=hdim,
nlayer=nlayer,
residual=True)
print(f'Using Temporal Attention space-time: {nlayer} layers {hdim} dim.')
else:
self.st_module = None
# Motion memory
if cfg.MODEL.MOTION_MODULE:
hdim = cfg.MODEL.MOTION_HDIM
nlayer = cfg.MODEL.MOTION_NLAYER
self.motion_module = temporal_attention(in_dim=self.pose_num * self.pose_dim + self.box_info_dim,
out_dim=self.pose_num * self.pose_dim,
hdim=hdim,
nlayer=nlayer,
residual=False)
print(f'Using Temporal Attention motion layer: {nlayer} layers {hdim} dim.')
else:
self.motion_module = None
# Create MANO head
# self.mano_head = build_mano_head(cfg)
self.mano_head = MANOTransformerDecoderHead(cfg)
# default open torch compile
if cfg.MODEL.BACKBONE.get('TORCH_COMPILE', 0):
log.info("Model will use torch.compile")
self.backbone = torch.compile(self.backbone)
self.mano_head = torch.compile(self.mano_head)
# Define loss functions
# self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1')
# self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1')
# self.mano_parameter_loss = ParameterLoss()
# Instantiate MANO model
mano_cfg = {k.lower(): v for k,v in dict(cfg.MANO).items()}
self.mano = MANO(**mano_cfg)
# Buffer that shows whetheer we need to initialize ActNorm layers
self.register_buffer('initialized', torch.tensor(False))
# Disable automatic optimization since we use adversarial training
self.automatic_optimization = False
if cfg.MODEL.get('LOAD_WEIGHTS', None):
whole_state_dict = torch.load(cfg.MODEL.LOAD_WEIGHTS, map_location='cpu')['state_dict']
self.load_state_dict(whole_state_dict, strict=True)
print(f"load {cfg.MODEL.LOAD_WEIGHTS}")
def get_parameters(self):
all_params = list(self.mano_head.parameters())
if not self.st_module is None:
all_params += list(self.st_module.parameters())
if not self.motion_module is None:
all_params += list(self.motion_module.parameters())
all_params += list(self.backbone.parameters())
return all_params
def configure_optimizers(self) -> torch.optim.Optimizer:
"""
Setup model and distriminator Optimizers
Returns:
Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: Model and discriminator optimizers
"""
param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}]
optimizer = torch.optim.AdamW(params=param_groups,
# lr=self.cfg.TRAIN.LR,
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
return optimizer
def forward_step(self, batch: Dict, train: bool = False) -> Dict:
"""
Run a forward step of the network
Args:
batch (Dict): Dictionary containing batch data
train (bool): Flag indicating whether it is training or validation mode
Returns:
Dict: Dictionary containing the regression output
"""
image = batch['img'].flatten(0, 1)
center = batch['center'].flatten(0, 1)
scale = batch['scale'].flatten(0, 1)
img_focal = batch['img_focal'].flatten(0, 1)
img_center = batch['img_center'].flatten(0, 1)
bn = len(image)
# estimate focal length, and bbox
bbox_info = self.bbox_est(center, scale, img_focal, img_center)
# backbone
feature = self.backbone(image[:,:,:,32:-32])
feature = feature.float()
# space-time module
if self.st_module is not None:
bb = einops.repeat(bbox_info, 'b c -> b c h w', h=16, w=12)
feature = torch.cat([feature, bb], dim=1)
feature = einops.rearrange(feature, '(b t) c h w -> (b h w) t c', t=16)
feature = self.st_module(feature)
feature = einops.rearrange(feature, '(b h w) t c -> (b t) c h w', h=16, w=12)
# smpl_head: transformer + smpl
# pred_mano_params, pred_cam, pred_mano_params_list = self.mano_head(feature)
# pred_shape = pred_mano_params_list['pred_shape']
# pred_pose = pred_mano_params_list['pred_pose']
pred_pose, pred_shape, pred_cam = self.mano_head(feature)
pred_rotmat_0 = rot6d_to_rotmat(pred_pose).reshape(-1, self.pose_num, 3, 3)
# smpl motion module
if self.motion_module is not None:
bb = einops.rearrange(bbox_info, '(b t) c -> b t c', t=16)
pred_pose = einops.rearrange(pred_pose, '(b t) c -> b t c', t=16)
pred_pose = torch.cat([pred_pose, bb], dim=2)
pred_pose = self.motion_module(pred_pose)
pred_pose = einops.rearrange(pred_pose, 'b t c -> (b t) c')
out = {}
if 'do_flip' in batch:
pred_cam[..., 1] *= -1
center[..., 0] = img_center[..., 0]*2 - center[..., 0] - 1
out['pred_cam'] = pred_cam
out['pred_pose'] = pred_pose
out['pred_shape'] = pred_shape
out['pred_rotmat'] = rot6d_to_rotmat(out['pred_pose']).reshape(-1, self.pose_num, 3, 3)
out['pred_rotmat_0'] = pred_rotmat_0
s_out = self.mano.query(out)
j3d = s_out.joints
j2d = self.project(j3d, out['pred_cam'], center, scale, img_focal, img_center)
j2d = j2d / self.crop_size - 0.5 # norm to [-0.5, 0.5]
trans_full = self.get_trans(out['pred_cam'], center, scale, img_focal, img_center)
out['trans_full'] = trans_full
output = {
'pred_mano_params': {
'global_orient': out['pred_rotmat'][:, :1].clone(),
'hand_pose': out['pred_rotmat'][:, 1:].clone(),
'betas': out['pred_shape'].clone(),
},
'pred_keypoints_3d': j3d.clone(),
'pred_keypoints_2d': j2d.clone(),
'out': out,
}
# print(output)
# output['gt_project_j2d'] = self.project(batch['gt_j3d_wo_trans'].clone().flatten(0,1), out['pred_cam'], center, scale, img_focal, img_center)
# output['gt_project_j2d'] = output['gt_project_j2d'] / self.crop_size - 0.5
return output
def compute_loss(self, batch: Dict, output: Dict, train: bool = True) -> torch.Tensor:
"""
Compute losses given the input batch and the regression output
Args:
batch (Dict): Dictionary containing batch data
output (Dict): Dictionary containing the regression output
train (bool): Flag indicating whether it is training or validation mode
Returns:
torch.Tensor : Total loss for current batch
"""
pred_mano_params = output['pred_mano_params']
pred_keypoints_2d = output['pred_keypoints_2d']
pred_keypoints_3d = output['pred_keypoints_3d']
batch_size = pred_mano_params['hand_pose'].shape[0]
device = pred_mano_params['hand_pose'].device
dtype = pred_mano_params['hand_pose'].dtype
# Get annotations
gt_keypoints_2d = batch['gt_cam_j2d'].flatten(0, 1)
gt_keypoints_2d = torch.cat([gt_keypoints_2d, torch.ones(*gt_keypoints_2d.shape[:-1], 1, device=gt_keypoints_2d.device)], dim=-1)
gt_keypoints_3d = batch['gt_j3d_wo_trans'].flatten(0, 1)
gt_keypoints_3d = torch.cat([gt_keypoints_3d, torch.ones(*gt_keypoints_3d.shape[:-1], 1, device=gt_keypoints_3d.device)], dim=-1)
pose_gt = batch['gt_cam_full_pose'].flatten(0, 1).reshape(-1, 16, 3)
rotmat_gt = angle_axis_to_rotation_matrix(pose_gt)
gt_mano_params = {
'global_orient': rotmat_gt[:, :1],
'hand_pose': rotmat_gt[:, 1:],
'betas': batch['gt_cam_betas'],
}
# Compute 3D keypoint loss
loss_keypoints_2d = self.keypoint_2d_loss(pred_keypoints_2d, gt_keypoints_2d)
loss_keypoints_3d = self.keypoint_3d_loss(pred_keypoints_3d, gt_keypoints_3d, pelvis_id=0)
# to avoid nan
loss_keypoints_2d = torch.nan_to_num(loss_keypoints_2d)
# Compute loss on MANO parameters
loss_mano_params = {}
for k, pred in pred_mano_params.items():
gt = gt_mano_params[k].view(batch_size, -1)
loss_mano_params[k] = self.mano_parameter_loss(pred.reshape(batch_size, -1), gt.reshape(batch_size, -1))
loss = self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'] * loss_keypoints_3d+\
self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'] * loss_keypoints_2d+\
sum([loss_mano_params[k] * self.cfg.LOSS_WEIGHTS[k.upper()] for k in loss_mano_params])
losses = dict(loss=loss.detach(),
loss_keypoints_2d=loss_keypoints_2d.detach() * self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'],
loss_keypoints_3d=loss_keypoints_3d.detach() * self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'])
for k, v in loss_mano_params.items():
losses['loss_' + k] = v.detach() * self.cfg.LOSS_WEIGHTS[k.upper()]
output['losses'] = losses
return loss
# Tensoroboard logging should run from first rank only
@pl.utilities.rank_zero.rank_zero_only
def tensorboard_logging(self, batch: Dict, output: Dict, step_count: int, train: bool = True, write_to_summary_writer: bool = True, render_log: bool = True) -> None:
"""
Log results to Tensorboard
Args:
batch (Dict): Dictionary containing batch data
output (Dict): Dictionary containing the regression output
step_count (int): Global training step count
train (bool): Flag indicating whether it is training or validation mode
"""
mode = 'train' if train else 'val'
batch_size = output['pred_keypoints_2d'].shape[0]
images = batch['img'].flatten(0,1)
images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1,3,1,1)
images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1,3,1,1)
losses = output['losses']
if write_to_summary_writer:
summary_writer = self.logger.experiment
for loss_name, val in losses.items():
summary_writer.add_scalar(mode +'/' + loss_name, val.detach().item(), step_count)
if render_log:
gt_keypoints_2d = batch['gt_cam_j2d'].flatten(0,1).clone()
pred_keypoints_2d = output['pred_keypoints_2d'].clone().detach().reshape(batch_size, -1, 2)
gt_project_j2d = pred_keypoints_2d
# gt_project_j2d = output['gt_project_j2d'].clone().detach().reshape(batch_size, -1, 2)
num_images = 4
skip=16
predictions = self.visualize_tensorboard(images[:num_images*skip:skip].cpu().numpy(),
pred_keypoints_2d[:num_images*skip:skip].cpu().numpy(),
gt_project_j2d[:num_images*skip:skip].cpu().numpy(),
gt_keypoints_2d[:num_images*skip:skip].cpu().numpy(),
)
summary_writer.add_image('%s/predictions' % mode, predictions, step_count)
def forward(self, batch: Dict) -> Dict:
"""
Run a forward step of the network in val mode
Args:
batch (Dict): Dictionary containing batch data
Returns:
Dict: Dictionary containing the regression output
"""
return self.forward_step(batch, train=False)
def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict:
"""
Run a full training step
Args:
joint_batch (Dict): Dictionary containing image and mocap batch data
batch_idx (int): Unused.
batch_idx (torch.Tensor): Unused.
Returns:
Dict: Dictionary containing regression output.
"""
batch = joint_batch['img']
optimizer = self.optimizers(use_pl_optimizer=True)
batch_size = batch['img'].shape[0]
output = self.forward_step(batch, train=True)
# pred_mano_params = output['pred_mano_params']
loss = self.compute_loss(batch, output, train=True)
# Error if Nan
if torch.isnan(loss):
raise ValueError('Loss is NaN')
optimizer.zero_grad()
self.manual_backward(loss)
# Clip gradient
if self.cfg.TRAIN.get('GRAD_CLIP_VAL', 0) > 0:
gn = torch.nn.utils.clip_grad_norm_(self.get_parameters(), self.cfg.TRAIN.GRAD_CLIP_VAL, error_if_nonfinite=True)
self.log('train/grad_norm', gn, on_step=True, on_epoch=True, prog_bar=True, logger=True, batch_size=batch_size)
optimizer.step()
# if self.global_step > 0 and self.global_step % self.cfg.GENERAL.LOG_STEPS == 0:
if self.global_step > 0 and self.global_step % 100 == 0:
self.tensorboard_logging(batch, output, self.global_step, train=True, render_log=self.cfg.TRAIN.get("RENDER_LOG", True))
self.log('train/loss', output['losses']['loss'], on_step=True, on_epoch=True, prog_bar=True, logger=False, batch_size=batch_size)
return output
def inference(self, imgfiles, boxes, img_focal, img_center, device='cuda', do_flip=False):
db = TrackDatasetEval(imgfiles, boxes, img_focal=img_focal,
img_center=img_center, normalization=True, dilate=1.2, do_flip=do_flip)
# Results
pred_cam = []
pred_pose = []
pred_shape = []
pred_rotmat = []
pred_trans = []
# To-do: efficient implementation with batch
items = []
for i in tqdm(range(len(db))):
item = db[i]
items.append(item)
# padding to 16
if i == len(db) - 1 and len(db) % 16 != 0:
pad = 16 - len(db) % 16
for _ in range(pad):
items.append(item)
if len(items) < 16:
continue
elif len(items) == 16:
batch = default_collate(items)
items = []
else:
raise NotImplementedError
with torch.no_grad():
batch = {k: v.to(device).unsqueeze(0) for k, v in batch.items() if type(v)==torch.Tensor}
# for image_i in range(16):
# hawor_input_cv2 = vis_tensor_cv2(batch['img'][:, image_i])
# cv2.imwrite(f'debug_vis_model.png', hawor_input_cv2)
# print("vis")
output = self.forward(batch)
out = output['out']
if i == len(db) - 1 and len(db) % 16 != 0:
out = {k:v[:len(db) % 16] for k,v in out.items()}
else:
out = {k:v for k,v in out.items()}
pred_cam.append(out['pred_cam'].cpu())
pred_pose.append(out['pred_pose'].cpu())
pred_shape.append(out['pred_shape'].cpu())
pred_rotmat.append(out['pred_rotmat'].cpu())
pred_trans.append(out['trans_full'].cpu())
results = {'pred_cam': torch.cat(pred_cam),
'pred_pose': torch.cat(pred_pose),
'pred_shape': torch.cat(pred_shape),
'pred_rotmat': torch.cat(pred_rotmat),
'pred_trans': torch.cat(pred_trans),
'img_focal': img_focal,
'img_center': img_center}
return results
def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx=0) -> Dict:
"""
Run a validation step and log to Tensorboard
Args:
batch (Dict): Dictionary containing batch data
batch_idx (int): Unused.
Returns:
Dict: Dictionary containing regression output.
"""
# batch_size = batch['img'].shape[0]
output = self.forward_step(batch, train=False)
loss = self.compute_loss(batch, output, train=False)
output['loss'] = loss
self.tensorboard_logging(batch, output, self.global_step, train=False)
return output
def visualize_tensorboard(self, images, pred_keypoints, gt_project_j2d, gt_keypoints):
pred_keypoints = 256 * (pred_keypoints + 0.5)
gt_keypoints = 256 * (gt_keypoints + 0.5)
gt_project_j2d = 256 * (gt_project_j2d + 0.5)
pred_keypoints = np.concatenate((pred_keypoints, np.ones_like(pred_keypoints)[:, :, [0]]), axis=-1)
gt_keypoints = np.concatenate((gt_keypoints, np.ones_like(gt_keypoints)[:, :, [0]]), axis=-1)
gt_project_j2d = np.concatenate((gt_project_j2d, np.ones_like(gt_project_j2d)[:, :, [0]]), axis=-1)
images_np = np.transpose(images, (0,2,3,1))
rend_imgs = []
for i in range(images_np.shape[0]):
pred_keypoints_img = render_openpose(255 * images_np[i].copy(), pred_keypoints[i]) / 255
gt_project_j2d_img = render_openpose(255 * images_np[i].copy(), gt_project_j2d[i]) / 255
gt_keypoints_img = render_openpose(255*images_np[i].copy(), gt_keypoints[i]) / 255
rend_imgs.append(torch.from_numpy(images[i]))
rend_imgs.append(torch.from_numpy(pred_keypoints_img).permute(2,0,1))
rend_imgs.append(torch.from_numpy(gt_project_j2d_img).permute(2,0,1))
rend_imgs.append(torch.from_numpy(gt_keypoints_img).permute(2,0,1))
rend_imgs = make_grid(rend_imgs, nrow=4, padding=2)
return rend_imgs
def project(self, points, pred_cam, center, scale, img_focal, img_center, return_full=False):
trans_full = self.get_trans(pred_cam, center, scale, img_focal, img_center)
# Projection in full frame image coordinate
points = points + trans_full
points2d_full = perspective_projection(points, rotation=None, translation=None,
focal_length=img_focal, camera_center=img_center)
# Adjust projected points to crop image coordinate
# (s.t. 1. we can calculate loss in crop image easily
# 2. we can query its pixel in the crop
# )
b = scale * 200
points2d = points2d_full - (center - b[:,None]/2)[:,None,:]
points2d = points2d * (self.crop_size / b)[:,None,None]
if return_full:
return points2d_full, points2d
else:
return points2d
def get_trans(self, pred_cam, center, scale, img_focal, img_center):
b = scale * 200
cx, cy = center[:,0], center[:,1] # center of crop
s, tx, ty = pred_cam.unbind(-1)
img_cx, img_cy = img_center[:,0], img_center[:,1] # center of original image
bs = b*s
tx_full = tx + 2*(cx-img_cx)/bs
ty_full = ty + 2*(cy-img_cy)/bs
tz_full = 2*img_focal/bs
trans_full = torch.stack([tx_full, ty_full, tz_full], dim=-1)
trans_full = trans_full.unsqueeze(1)
return trans_full
def bbox_est(self, center, scale, img_focal, img_center):
# Original image center
img_cx, img_cy = img_center[:,0], img_center[:,1]
# Implement CLIFF (Li et al.) bbox feature
cx, cy, b = center[:, 0], center[:, 1], scale * 200
bbox_info = torch.stack([cx - img_cx, cy - img_cy, b], dim=-1)
bbox_info[:, :2] = bbox_info[:, :2] / img_focal.unsqueeze(-1) * 2.8
bbox_info[:, 2] = (bbox_info[:, 2] - 0.24 * img_focal) / (0.06 * img_focal)
return bbox_info
|