import gradio as gr gr.load("models/meta-llama/Meta-Llama-3-8B").launch() # import transformers # import torch # import os # os.environ["HF_TOKEN"] = st.secrets["HF_TOKEN"] # os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"] # # os.environ["USE_FLASH_ATTENTION"] = "1" # print(f"Device name: {torch.cuda.get_device_properties('cuda').name}") # print(f"FlashAttention available: {torch.backends.cuda.flash_sdp_enabled()}") # print(f"torch version: {torch.version}") # # model_id = "meta-llama/Meta-Llama-3-8B" # # pipeline = transformers.pipeline( # # "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto" # # ) # # pipeline("Hey how are you doing today?") # model_id = "meta-llama/Meta-Llama-3-8B-Instruct" # pipeline = transformers.pipeline( # "text-generation", # model=model_id, # model_kwargs={"torch_dtype": torch.bfloat16}, # device_map="auto", # ) # messages = [ # { # "role": "system", # "content": "You are a pirate chatbot who always responds in pirate speak!", # }, # {"role": "user", "content": "Who are you?"}, # ] # prompt = pipeline.tokenizer.apply_chat_template( # messages, tokenize=False, add_generation_prompt=True # ) # terminators = [ # pipeline.tokenizer.eos_token_id, # pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>"), # ] # outputs = pipeline( # prompt, # max_new_tokens=256, # eos_token_id=terminators, # do_sample=True, # temperature=0.6, # top_p=0.9, # ) # print(outputs[0]["generated_text"][len(prompt) :]) # print("hello")