MasaCtrl / app.py
ljzycmd
Add hugging face space demo.
5fc5efa
raw
history blame
1.89 kB
import gradio as gr
import numpy as np
import torch
from diffusers import DDIMScheduler
from pytorch_lightning import seed_everything
from masactrl.diffuser_utils import MasaCtrlPipeline
from masactrl.masactrl_utils import (AttentionBase,
regiter_attention_editor_diffusers)
torch.set_grad_enabled(False)
from gradio_app.image_synthesis_app import create_demo_synthesis
from gradio_app.real_image_editing_app import create_demo_editing
from gradio_app.app_utils import global_context
TITLE = "# [MasaCtrl](https://ljzycmd.github.io/projects/MasaCtrl/)"
DESCRIPTION = "<b>Gradio demo for MasaCtrl</b>: [[GitHub]](https://github.com/TencentARC/MasaCtrl), \
[[Paper]](https://arxiv.org/abs/2304.08465). \
If MasaCtrl is helpful, please help to ⭐ the [Github Repo](https://github.com/TencentARC/MasaCtrl) 😊 </p>"
DESCRIPTION += '<p>For faster inference without waiting in queue, \
you may duplicate the space and upgrade to GPU in settings. </p>'
with gr.Blocks(css="style.css") as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
model_path_gr = gr.Dropdown(
["andite/anything-v4.0",
"CompVis/stable-diffusion-v1-4",
"runwayml/stable-diffusion-v1-5"],
value="andite/anything-v4.0",
label="Model", info="Select the model to use!"
)
with gr.Tab("Consistent Synthesis"):
create_demo_synthesis()
with gr.Tab("Real Editing"):
create_demo_editing()
def reload_ckpt(model_path):
print("Reloading model from", model_path)
global_context["model"] = MasaCtrlPipeline.from_pretrained(
model_path, scheduler=global_context["scheduler"]).to(global_context["device"])
model_path_gr.select(
reload_ckpt,
[model_path_gr]
)
if __name__ == "__main__":
demo.launch()