Spaces:
Sleeping
Sleeping
File size: 10,966 Bytes
5fc5efa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
"""
Util functions based on Diffuser framework.
"""
import os
import torch
import cv2
import numpy as np
import torch.nn.functional as F
from tqdm import tqdm
from PIL import Image
from torchvision.utils import save_image
from torchvision.io import read_image
from diffusers import StableDiffusionPipeline
from pytorch_lightning import seed_everything
class MasaCtrlPipeline(StableDiffusionPipeline):
def next_step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
eta=0.,
verbose=False
):
"""
Inverse sampling for DDIM Inversion
"""
if verbose:
print("timestep: ", timestep)
next_step = timestep
timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999)
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step]
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir
return x_next, pred_x0
def step(
self,
model_output: torch.FloatTensor,
timestep: int,
x: torch.FloatTensor,
eta: float=0.0,
verbose=False,
):
"""
predict the sampe the next step in the denoise process.
"""
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep > 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
pred_dir = (1 - alpha_prod_t_prev)**0.5 * model_output
x_prev = alpha_prod_t_prev**0.5 * pred_x0 + pred_dir
return x_prev, pred_x0
@torch.no_grad()
def image2latent(self, image):
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if type(image) is Image:
image = np.array(image)
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(DEVICE)
# input image density range [-1, 1]
latents = self.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
elif return_type == "pt":
image = (image / 2 + 0.5).clamp(0, 1)
return image
def latent2image_grad(self, latents):
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents)['sample']
return image # range [-1, 1]
@torch.no_grad()
def __call__(
self,
prompt,
batch_size=1,
height=512,
width=512,
num_inference_steps=50,
guidance_scale=7.5,
eta=0.0,
latents=None,
unconditioning=None,
neg_prompt=None,
ref_intermediate_latents=None,
return_intermediates=False,
**kwds):
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if isinstance(prompt, list):
batch_size = len(prompt)
elif isinstance(prompt, str):
if batch_size > 1:
prompt = [prompt] * batch_size
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
print("input text embeddings :", text_embeddings.shape)
if kwds.get("dir"):
dir = text_embeddings[-2] - text_embeddings[-1]
u, s, v = torch.pca_lowrank(dir.transpose(-1, -2), q=1, center=True)
text_embeddings[-1] = text_embeddings[-1] + kwds.get("dir") * v
print(u.shape)
print(v.shape)
# define initial latents
latents_shape = (batch_size, self.unet.in_channels, height//8, width//8)
if latents is None:
latents = torch.randn(latents_shape, device=DEVICE)
else:
assert latents.shape == latents_shape, f"The shape of input latent tensor {latents.shape} should equal to predefined one."
# unconditional embedding for classifier free guidance
if guidance_scale > 1.:
max_length = text_input.input_ids.shape[-1]
if neg_prompt:
uc_text = neg_prompt
else:
uc_text = ""
# uc_text = "ugly, tiling, poorly drawn hands, poorly drawn feet, body out of frame, cut off, low contrast, underexposed, distorted face"
unconditional_input = self.tokenizer(
[uc_text] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
# unconditional_input.input_ids = unconditional_input.input_ids[:, 1:]
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(DEVICE))[0]
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings], dim=0)
print("latents shape: ", latents.shape)
# iterative sampling
self.scheduler.set_timesteps(num_inference_steps)
# print("Valid timesteps: ", reversed(self.scheduler.timesteps))
latents_list = [latents]
pred_x0_list = [latents]
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="DDIM Sampler")):
if ref_intermediate_latents is not None:
# note that the batch_size >= 2
latents_ref = ref_intermediate_latents[-1 - i]
_, latents_cur = latents.chunk(2)
latents = torch.cat([latents_ref, latents_cur])
if guidance_scale > 1.:
model_inputs = torch.cat([latents] * 2)
else:
model_inputs = latents
if unconditioning is not None and isinstance(unconditioning, list):
_, text_embeddings = text_embeddings.chunk(2)
text_embeddings = torch.cat([unconditioning[i].expand(*text_embeddings.shape), text_embeddings])
# predict tghe noise
noise_pred = self.unet(model_inputs, t, encoder_hidden_states=text_embeddings).sample
if guidance_scale > 1.:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon)
# compute the previous noise sample x_t -> x_t-1
latents, pred_x0 = self.step(noise_pred, t, latents)
latents_list.append(latents)
pred_x0_list.append(pred_x0)
image = self.latent2image(latents, return_type="pt")
if return_intermediates:
pred_x0_list = [self.latent2image(img, return_type="pt") for img in pred_x0_list]
latents_list = [self.latent2image(img, return_type="pt") for img in latents_list]
return image, pred_x0_list, latents_list
return image
@torch.no_grad()
def invert(
self,
image: torch.Tensor,
prompt,
num_inference_steps=50,
guidance_scale=7.5,
eta=0.0,
return_intermediates=False,
**kwds):
"""
invert a real image into noise map with determinisc DDIM inversion
"""
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
batch_size = image.shape[0]
if isinstance(prompt, list):
if batch_size == 1:
image = image.expand(len(prompt), -1, -1, -1)
elif isinstance(prompt, str):
if batch_size > 1:
prompt = [prompt] * batch_size
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
print("input text embeddings :", text_embeddings.shape)
# define initial latents
latents = self.image2latent(image)
start_latents = latents
# print(latents)
# exit()
# unconditional embedding for classifier free guidance
if guidance_scale > 1.:
max_length = text_input.input_ids.shape[-1]
unconditional_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(DEVICE))[0]
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings], dim=0)
print("latents shape: ", latents.shape)
# interative sampling
self.scheduler.set_timesteps(num_inference_steps)
print("Valid timesteps: ", reversed(self.scheduler.timesteps))
# print("attributes: ", self.scheduler.__dict__)
latents_list = [latents]
pred_x0_list = [latents]
for i, t in enumerate(tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")):
if guidance_scale > 1.:
model_inputs = torch.cat([latents] * 2)
else:
model_inputs = latents
# predict the noise
noise_pred = self.unet(model_inputs, t, encoder_hidden_states=text_embeddings).sample
if guidance_scale > 1.:
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon)
# compute the previous noise sample x_t-1 -> x_t
latents, pred_x0 = self.next_step(noise_pred, t, latents)
latents_list.append(latents)
pred_x0_list.append(pred_x0)
if return_intermediates:
# return the intermediate laters during inversion
# pred_x0_list = [self.latent2image(img, return_type="pt") for img in pred_x0_list]
return latents, latents_list
return latents, start_latents
|