Spaces:
Running
Running
Tanmay09516
commited on
backend for LangChat
Browse files- Dockerfile +18 -0
- app.py +91 -0
- nomic_embeddings.py +30 -0
- qdrant_search.py +40 -0
- requirements.txt +11 -0
Dockerfile
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a base image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy requirements and install dependencies
|
8 |
+
COPY requirements.txt requirements.txt
|
9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
+
|
11 |
+
# Copy the application code
|
12 |
+
COPY . .
|
13 |
+
|
14 |
+
# Expose the port FastAPI runs on
|
15 |
+
EXPOSE 8000
|
16 |
+
|
17 |
+
# Command to run the app
|
18 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from fastapi import FastAPI, HTTPException
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from pydantic import BaseModel
|
7 |
+
from qdrant_search import QdrantSearch
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from nomic_embeddings import EmbeddingsModel
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
import warnings
|
14 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
15 |
+
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "FALSE"
|
17 |
+
|
18 |
+
# Initialize FastAPI app
|
19 |
+
app = FastAPI()
|
20 |
+
|
21 |
+
# Allow CORS for frontend on Vercel
|
22 |
+
app.add_middleware(
|
23 |
+
CORSMiddleware,
|
24 |
+
allow_origins=["*"], # Replace "*" with your frontend URL for better security
|
25 |
+
allow_credentials=True,
|
26 |
+
allow_methods=["*"],
|
27 |
+
allow_headers=["*"],
|
28 |
+
)
|
29 |
+
|
30 |
+
# Initialize global variables
|
31 |
+
collection_names = ["docs_v1_2", "docs_v2_2", "docs_v3_2"]
|
32 |
+
limit = 5
|
33 |
+
llm = ChatGroq(model="mixtral-8x7b-32768")
|
34 |
+
embeddings = EmbeddingsModel()
|
35 |
+
search = QdrantSearch(
|
36 |
+
qdrant_url=os.environ["QDRANT_CLOUD_URL"],
|
37 |
+
api_key=os.environ["QDRANT_API_KEY"],
|
38 |
+
embeddings=embeddings
|
39 |
+
)
|
40 |
+
|
41 |
+
# Define request and response models
|
42 |
+
class QueryRequest(BaseModel):
|
43 |
+
question: str
|
44 |
+
|
45 |
+
class AnswerResponse(BaseModel):
|
46 |
+
answer: str
|
47 |
+
sources: list
|
48 |
+
|
49 |
+
# API endpoint to handle user queries
|
50 |
+
@app.post("/api/chat", response_model=AnswerResponse)
|
51 |
+
async def chat_endpoint(request: QueryRequest):
|
52 |
+
query = request.question.strip()
|
53 |
+
if not query:
|
54 |
+
raise HTTPException(status_code=400, detail="Query cannot be empty.")
|
55 |
+
|
56 |
+
# Step 1: Retrieve relevant documents from Qdrant
|
57 |
+
retrieved_docs = search.query_multiple_collections(query, collection_names, limit)
|
58 |
+
|
59 |
+
# Step 2: Prepare the context from retrieved documents
|
60 |
+
context = "\n".join([doc['text'] for doc in retrieved_docs])
|
61 |
+
|
62 |
+
# Step 3: Construct the prompt with context and question
|
63 |
+
prompt = (
|
64 |
+
"You are LangAssist, a knowledgeable assistant for the LangChain Python Library. "
|
65 |
+
"Given the following context from the documentation, provide a helpful answer to the user's question.\n\n"
|
66 |
+
"Context:\n{context}\n\n"
|
67 |
+
"Question: {question}\n\n"
|
68 |
+
"Answer:"
|
69 |
+
).format(context=context, question=query)
|
70 |
+
|
71 |
+
# Step 4: Generate an answer using the language model
|
72 |
+
try:
|
73 |
+
answer = llm.invoke(prompt)
|
74 |
+
except Exception as e:
|
75 |
+
raise HTTPException(status_code=500, detail=str(e))
|
76 |
+
|
77 |
+
# Prepare sources
|
78 |
+
sources = [
|
79 |
+
{
|
80 |
+
"source": doc['source'],
|
81 |
+
"text": doc['text']
|
82 |
+
} for doc in retrieved_docs
|
83 |
+
]
|
84 |
+
|
85 |
+
# Step 5: Return the answer and sources
|
86 |
+
# return AnswerResponse(answer=answer.strip(), sources=sources)
|
87 |
+
return AnswerResponse(answer=answer.content.strip(), sources=sources)
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
import uvicorn
|
91 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
nomic_embeddings.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
2 |
+
|
3 |
+
class EmbeddingsModel:
|
4 |
+
def __init__(self):
|
5 |
+
model_name = "nomic-ai/nomic-embed-text-v1"
|
6 |
+
model_kwargs = {
|
7 |
+
'device': 'cpu',
|
8 |
+
'trust_remote_code': True
|
9 |
+
}
|
10 |
+
encode_kwargs = {'normalize_embeddings': True}
|
11 |
+
self.embeddings = HuggingFaceBgeEmbeddings(
|
12 |
+
model_name=model_name,
|
13 |
+
model_kwargs=model_kwargs,
|
14 |
+
encode_kwargs=encode_kwargs,
|
15 |
+
query_instruction="search_query:",
|
16 |
+
embed_instruction="search_document:"
|
17 |
+
)
|
18 |
+
|
19 |
+
def get_embeddings(self, text):
|
20 |
+
"""
|
21 |
+
Returns the embeddings for the given text.
|
22 |
+
|
23 |
+
:param text: The input text to get embeddings for.
|
24 |
+
:return: The embeddings as a numpy array.
|
25 |
+
"""
|
26 |
+
return self.embeddings.embed_query(text)
|
27 |
+
|
28 |
+
# Example usage:
|
29 |
+
# embeddings_model = EmbeddingsModel()
|
30 |
+
# embeddings = embeddings_model.get_embeddings("Your input text here")
|
qdrant_search.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# qdrant_search.py
|
2 |
+
|
3 |
+
from typing import List, Dict
|
4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from qdrant_client import QdrantClient
|
6 |
+
|
7 |
+
class QdrantSearch:
|
8 |
+
def __init__(self, qdrant_url: str, api_key: str, embeddings):
|
9 |
+
self.embeddings=embeddings
|
10 |
+
# Initialize Qdrant client
|
11 |
+
self.client = QdrantClient(
|
12 |
+
url=qdrant_url,
|
13 |
+
api_key=api_key,
|
14 |
+
)
|
15 |
+
|
16 |
+
def query_qdrant(self, query: str, collection_name: str, limit: int = 5) -> List:
|
17 |
+
"""Retrieve relevant documents from Qdrant."""
|
18 |
+
query_vector = self.embeddings.get_embeddings(query)
|
19 |
+
|
20 |
+
results = self.client.search(
|
21 |
+
collection_name=collection_name,
|
22 |
+
query_vector=query_vector,
|
23 |
+
limit=limit
|
24 |
+
)
|
25 |
+
return results
|
26 |
+
|
27 |
+
def query_multiple_collections(self, query: str, collection_names: List[str], limit: int = 5) -> List[Dict]:
|
28 |
+
"""Query multiple Qdrant collections and return combined top results."""
|
29 |
+
all_results = []
|
30 |
+
|
31 |
+
for collection_name in collection_names:
|
32 |
+
results = self.query_qdrant(query, collection_name, limit)
|
33 |
+
for result in results:
|
34 |
+
all_results.append({
|
35 |
+
'text': result.payload['text'],
|
36 |
+
'source': result.payload['source'],
|
37 |
+
'score': result.score
|
38 |
+
})
|
39 |
+
|
40 |
+
return sorted(all_results, key=lambda x: x['score'], reverse=True)[:limit]
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
python-dotenv
|
4 |
+
qdrant-client
|
5 |
+
langchain
|
6 |
+
langchain_community
|
7 |
+
langchain_groq
|
8 |
+
pydantic
|
9 |
+
fastapi
|
10 |
+
einops
|
11 |
+
sentence-transformers
|