import pandas as pd import gradio as gr import csv import json import os import shutil from huggingface_hub import Repository HF_TOKEN = os.environ.get("HF_TOKEN") SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering", "Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"] MODEL_INFO = [ "Models", "Overall", "Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering", "Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"] DATA_TILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number', 'number'] SUBMISSION_NAME = "mmlu_pro_leaderboard_submission" SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME) CSV_DIR = "./mmlu_pro_leaderboard_submission/results.csv" COLUMN_NAMES = MODEL_INFO LEADERBORAD_INTRODUCTION = """# MMLU-Pro Leaderboard MMLU-Pro dataset, a more robust and challenging massive multi-task understanding dataset tailored to more \ rigorously benchmark large language models' capabilities. This dataset contains 12K \ complex questions across various disciplines. """ TABLE_INTRODUCTION = """ """ LEADERBORAD_INFO = """ We list the information of the used datasets as follows:
""" CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" CITATION_BUTTON_TEXT = r"""""" SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction ## ⚠ Please note that you need to submit the json file with following format: ```json { "Model": "[NAME]", "Repo": "https://huggingface.co/[MODEL_NAME]," "Overall": 56.7, "Biology": 23.4, "Business": 45.6, ..., "Other: 56.7" } ``` After submitting, you can click the "Refresh" button to see the updated leaderboard(it may takes few seconds). """ def get_df(): print("HF_TOKEN", HF_TOKEN) print("SUBMISSION_URL", SUBMISSION_URL) repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN) repo.git_pull() df = pd.read_csv(CSV_DIR) df = df.sort_values(by=['Overall'], ascending=False) return df[COLUMN_NAMES] def add_new_eval( input_file, ): if input_file is None: return "Error! Empty file!" upload_data = json.loads(input_file) data_row = [f'[{upload_data["Model"]}]({upload_data["Repo"]})', upload_data['Overall']] for subject in SUBJECTS: data_row += [upload_data[subject]] submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") submission_repo.git_pull() already_submitted = [] with open(CSV_DIR, mode='r') as file: reader = csv.reader(file, delimiter=',') for row in reader: already_submitted.append(row[0]) if data_row[0] not in already_submitted: with open(CSV_DIR, mode='a', newline='') as file: writer = csv.writer(file) writer.writerow(data_row) submission_repo.push_to_hub() print('Submission Successful') else: print('The entry already exists') def refresh_data(): return get_df()