Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update utils.py
Browse files
utils.py
CHANGED
@@ -12,12 +12,12 @@ SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics",
|
|
12 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
13 |
|
14 |
MODEL_INFO = [
|
15 |
-
"Models", "Data Source",
|
16 |
"Overall",
|
17 |
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
18 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
19 |
|
20 |
-
DATA_TITLE_TYPE = ['markdown', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number',
|
21 |
'number', 'number', 'number', 'number', 'number', 'number', 'number',
|
22 |
'number', 'number']
|
23 |
|
@@ -143,8 +143,25 @@ def add_new_eval(
|
|
143 |
def refresh_data():
|
144 |
return get_df()
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
def search_models(df, query):
|
147 |
if query:
|
148 |
return df[df['Models'].str.contains(query, case=False, na=False)]
|
149 |
return df
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
13 |
|
14 |
MODEL_INFO = [
|
15 |
+
"Models", "Data Source", "Model Size(B)",
|
16 |
"Overall",
|
17 |
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
|
18 |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
|
19 |
|
20 |
+
DATA_TITLE_TYPE = ['markdown', 'markdown', 'markdown', 'number', 'number', 'number', 'number', 'number', 'number',
|
21 |
'number', 'number', 'number', 'number', 'number', 'number', 'number',
|
22 |
'number', 'number']
|
23 |
|
|
|
143 |
def refresh_data():
|
144 |
return get_df()
|
145 |
|
146 |
+
|
147 |
+
def search_and_filter_models(df, query, min_size, max_size):
|
148 |
+
if query:
|
149 |
+
df = df[df['Models'].str.contains(query, case=False, na=False)]
|
150 |
+
|
151 |
+
df = df[(df['Model Size'] >= min_size) & (df['Model Size'] <= max_size)]
|
152 |
+
|
153 |
+
return df
|
154 |
+
|
155 |
+
|
156 |
def search_models(df, query):
|
157 |
if query:
|
158 |
return df[df['Models'].str.contains(query, case=False, na=False)]
|
159 |
return df
|
160 |
|
161 |
+
|
162 |
+
def get_size_range(df):
|
163 |
+
sizes = df['Model Size'].dropna()
|
164 |
+
if len(sizes) > 0:
|
165 |
+
return float(sizes.min()), float(sizes.max())
|
166 |
+
return 0, 500
|
167 |
+
|