Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pandas as pd | |
import gradio as gr | |
import csv | |
import json | |
import os | |
import shutil | |
from huggingface_hub import Repository | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering", | |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"] | |
MODEL_INFO = [ | |
"Models", | |
"Overall", | |
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering", | |
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"] | |
DATA_TITLE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number', | |
'number', 'number', 'number', 'number', 'number', 'number', 'number', | |
'number', 'number'] | |
SUBMISSION_NAME = "mmlu_pro_leaderboard_submission" | |
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME) | |
CSV_DIR = "./mmlu_pro_leaderboard_submission/results.csv" | |
COLUMN_NAMES = MODEL_INFO | |
LEADERBORAD_INTRODUCTION = """# MMLU-Pro Leaderboard | |
MMLU-Pro dataset, a more robust and challenging massive multi-task understanding dataset tailored to more \ | |
rigorously benchmark large language models' capabilities. This dataset contains 12K \ | |
complex questions across various disciplines. | |
""" | |
TABLE_INTRODUCTION = """ | |
""" | |
LEADERBORAD_INFO = """ | |
We list the information of the used datasets as follows:<br> | |
""" | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = r"""""" | |
SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction | |
## ⚠ Please note that you need to submit the json file with following format: | |
```json | |
{ | |
"Model": "[NAME]", | |
"Repo": "https://huggingface.co/[MODEL_NAME]," | |
"Overall": 56.7, | |
"Biology": 23.4, | |
"Business": 45.6, | |
..., | |
"Other: 56.7" | |
} | |
``` | |
After submitting, you can click the "Refresh" button to see the updated leaderboard(it may takes few seconds). | |
""" | |
def get_df(): | |
print("HF_TOKEN", HF_TOKEN) | |
print("SUBMISSION_URL", SUBMISSION_URL) | |
repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN) | |
repo.git_pull() | |
df = pd.read_csv(CSV_DIR) | |
df = df.sort_values(by=['Overall'], ascending=False) | |
return df[COLUMN_NAMES] | |
def add_new_eval( | |
input_file, | |
): | |
if input_file is None: | |
return "Error! Empty file!" | |
upload_data = json.loads(input_file) | |
data_row = [f'[{upload_data["Model"]}]({upload_data["Repo"]})', upload_data['Overall']] | |
for subject in SUBJECTS: | |
data_row += [upload_data[subject]] | |
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, | |
use_auth_token=HF_TOKEN, repo_type="dataset") | |
submission_repo.git_pull() | |
already_submitted = [] | |
with open(CSV_DIR, mode='r') as file: | |
reader = csv.reader(file, delimiter=',') | |
for row in reader: | |
already_submitted.append(row[0]) | |
if data_row[0] not in already_submitted: | |
with open(CSV_DIR, mode='a', newline='') as file: | |
writer = csv.writer(file) | |
writer.writerow(data_row) | |
submission_repo.push_to_hub() | |
print('Submission Successful') | |
else: | |
print('The entry already exists') | |
def refresh_data(): | |
return get_df() | |