MMLU-Pro / utils.py
ubowang's picture
Update utils.py
3a68c5a verified
raw
history blame
3.41 kB
import pandas as pd
import gradio as gr
import csv
import json
import os
import shutil
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
SUBJECTS = ["Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
MODEL_INFO = [
"Models",
"Overall",
"Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering",
"Health", "History", "Law", "Math", "Philosophy", "Physics", "Psychology", "Other"]
DATA_TITLE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number', 'number',
'number', 'number', 'number', 'number', 'number', 'number', 'number',
'number', 'number']
SUBMISSION_NAME = "mmlu_pro_leaderboard_submission"
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/TIGER-Lab/", SUBMISSION_NAME)
CSV_DIR = "./mmlu_pro_leaderboard_submission/results.csv"
COLUMN_NAMES = MODEL_INFO
LEADERBORAD_INTRODUCTION = """# MMLU-Pro Leaderboard
MMLU-Pro dataset, a more robust and challenging massive multi-task understanding dataset tailored to more \
rigorously benchmark large language models' capabilities. This dataset contains 12K \
complex questions across various disciplines.
"""
TABLE_INTRODUCTION = """
"""
LEADERBORAD_INFO = """
We list the information of the used datasets as follows:<br>
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r""""""
SUBMIT_INTRODUCTION = """# Submit on Science Leaderboard Introduction
## ⚠ Please note that you need to submit the json file with following format:
```json
{
"Model": "[NAME]",
"Repo": "https://huggingface.co/[MODEL_NAME],"
"Overall": 56.7,
"Biology": 23.4,
"Business": 45.6,
...,
"Other: 56.7"
}
```
After submitting, you can click the "Refresh" button to see the updated leaderboard(it may takes few seconds).
"""
def get_df():
print("HF_TOKEN", HF_TOKEN)
print("SUBMISSION_URL", SUBMISSION_URL)
repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN)
repo.git_pull()
df = pd.read_csv(CSV_DIR)
df = df.sort_values(by=['Overall'], ascending=False)
return df[COLUMN_NAMES]
def add_new_eval(
input_file,
):
if input_file is None:
return "Error! Empty file!"
upload_data = json.loads(input_file)
data_row = [f'[{upload_data["Model"]}]({upload_data["Repo"]})', upload_data['Overall']]
for subject in SUBJECTS:
data_row += [upload_data[subject]]
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL,
use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
already_submitted = []
with open(CSV_DIR, mode='r') as file:
reader = csv.reader(file, delimiter=',')
for row in reader:
already_submitted.append(row[0])
if data_row[0] not in already_submitted:
with open(CSV_DIR, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow(data_row)
submission_repo.push_to_hub()
print('Submission Successful')
else:
print('The entry already exists')
def refresh_data():
return get_df()