|
#include "llama.h" |
|
#include <cstdio> |
|
#include <cstring> |
|
#include <iostream> |
|
#include <string> |
|
#include <vector> |
|
|
|
static void print_usage(int, char ** argv) { |
|
printf("\nexample usage:\n"); |
|
printf("\n %s -m model.gguf [-c context_size] [-ngl n_gpu_layers]\n", argv[0]); |
|
printf("\n"); |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
std::string model_path; |
|
int ngl = 99; |
|
int n_ctx = 2048; |
|
|
|
|
|
for (int i = 1; i < argc; i++) { |
|
try { |
|
if (strcmp(argv[i], "-m") == 0) { |
|
if (i + 1 < argc) { |
|
model_path = argv[++i]; |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else if (strcmp(argv[i], "-c") == 0) { |
|
if (i + 1 < argc) { |
|
n_ctx = std::stoi(argv[++i]); |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else if (strcmp(argv[i], "-ngl") == 0) { |
|
if (i + 1 < argc) { |
|
ngl = std::stoi(argv[++i]); |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} else { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} catch (std::exception & e) { |
|
fprintf(stderr, "error: %s\n", e.what()); |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
} |
|
if (model_path.empty()) { |
|
print_usage(argc, argv); |
|
return 1; |
|
} |
|
|
|
|
|
llama_log_set([](enum ggml_log_level level, const char * text, void * ) { |
|
if (level >= GGML_LOG_LEVEL_ERROR) { |
|
fprintf(stderr, "%s", text); |
|
} |
|
}, nullptr); |
|
|
|
|
|
ggml_backend_load_all(); |
|
|
|
|
|
llama_model_params model_params = llama_model_default_params(); |
|
model_params.n_gpu_layers = ngl; |
|
|
|
llama_model * model = llama_model_load_from_file(model_path.c_str(), model_params); |
|
if (!model) { |
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__); |
|
return 1; |
|
} |
|
|
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
|
|
|
llama_context_params ctx_params = llama_context_default_params(); |
|
ctx_params.n_ctx = n_ctx; |
|
ctx_params.n_batch = n_ctx; |
|
|
|
llama_context * ctx = llama_init_from_model(model, ctx_params); |
|
if (!ctx) { |
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__); |
|
return 1; |
|
} |
|
|
|
|
|
llama_sampler * smpl = llama_sampler_chain_init(llama_sampler_chain_default_params()); |
|
llama_sampler_chain_add(smpl, llama_sampler_init_min_p(0.05f, 1)); |
|
llama_sampler_chain_add(smpl, llama_sampler_init_temp(0.8f)); |
|
llama_sampler_chain_add(smpl, llama_sampler_init_dist(LLAMA_DEFAULT_SEED)); |
|
|
|
|
|
auto generate = [&](const std::string & prompt) { |
|
std::string response; |
|
|
|
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0; |
|
|
|
|
|
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true); |
|
std::vector<llama_token> prompt_tokens(n_prompt_tokens); |
|
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) { |
|
GGML_ABORT("failed to tokenize the prompt\n"); |
|
} |
|
|
|
|
|
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size()); |
|
llama_token new_token_id; |
|
while (true) { |
|
|
|
int n_ctx = llama_n_ctx(ctx); |
|
int n_ctx_used = llama_get_kv_cache_used_cells(ctx); |
|
if (n_ctx_used + batch.n_tokens > n_ctx) { |
|
printf("\033[0m\n"); |
|
fprintf(stderr, "context size exceeded\n"); |
|
exit(0); |
|
} |
|
|
|
if (llama_decode(ctx, batch)) { |
|
GGML_ABORT("failed to decode\n"); |
|
} |
|
|
|
|
|
new_token_id = llama_sampler_sample(smpl, ctx, -1); |
|
|
|
|
|
if (llama_vocab_is_eog(vocab, new_token_id)) { |
|
break; |
|
} |
|
|
|
|
|
char buf[256]; |
|
int n = llama_token_to_piece(vocab, new_token_id, buf, sizeof(buf), 0, true); |
|
if (n < 0) { |
|
GGML_ABORT("failed to convert token to piece\n"); |
|
} |
|
std::string piece(buf, n); |
|
printf("%s", piece.c_str()); |
|
fflush(stdout); |
|
response += piece; |
|
|
|
|
|
batch = llama_batch_get_one(&new_token_id, 1); |
|
} |
|
|
|
return response; |
|
}; |
|
|
|
std::vector<llama_chat_message> messages; |
|
std::vector<char> formatted(llama_n_ctx(ctx)); |
|
int prev_len = 0; |
|
while (true) { |
|
|
|
printf("\033[32m> \033[0m"); |
|
std::string user; |
|
std::getline(std::cin, user); |
|
|
|
if (user.empty()) { |
|
break; |
|
} |
|
|
|
const char * tmpl = llama_model_chat_template(model, nullptr); |
|
|
|
|
|
messages.push_back({"user", strdup(user.c_str())}); |
|
int new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size()); |
|
if (new_len > (int)formatted.size()) { |
|
formatted.resize(new_len); |
|
new_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), true, formatted.data(), formatted.size()); |
|
} |
|
if (new_len < 0) { |
|
fprintf(stderr, "failed to apply the chat template\n"); |
|
return 1; |
|
} |
|
|
|
|
|
std::string prompt(formatted.begin() + prev_len, formatted.begin() + new_len); |
|
|
|
|
|
printf("\033[33m"); |
|
std::string response = generate(prompt); |
|
printf("\n\033[0m"); |
|
|
|
|
|
messages.push_back({"assistant", strdup(response.c_str())}); |
|
prev_len = llama_chat_apply_template(tmpl, messages.data(), messages.size(), false, nullptr, 0); |
|
if (prev_len < 0) { |
|
fprintf(stderr, "failed to apply the chat template\n"); |
|
return 1; |
|
} |
|
} |
|
|
|
|
|
for (auto & msg : messages) { |
|
free(const_cast<char *>(msg.content)); |
|
} |
|
llama_sampler_free(smpl); |
|
llama_free(ctx); |
|
llama_model_free(model); |
|
|
|
return 0; |
|
} |
|
|