File size: 15,262 Bytes
260542b cfd08d1 4b4a015 260542b f1287e8 260542b cc859c9 0805af2 cc859c9 f1287e8 cfd08d1 6b0e51f 4b4a015 0805af2 f1287e8 4b4a015 3a806f2 4b4a015 260542b 4b4a015 260542b 574d76d 4b4a015 574d76d 260542b 3a806f2 4b4a015 f1287e8 4b4a015 260542b 4b4a015 3a806f2 6b0e51f 260542b 039130e 6b0e51f 3a806f2 260542b 6b0e51f 4b4a015 6b0e51f 3a806f2 6b0e51f 260542b 6b0e51f f1287e8 4b4a015 bb4bbf2 4b4a015 3a806f2 4b4a015 260542b f1287e8 4b4a015 bb4bbf2 4b4a015 260542b 574d76d 4b4a015 574d76d 4b4a015 3a806f2 4b4a015 bb4bbf2 3a806f2 4b4a015 260542b 3a806f2 260542b f1287e8 4b4a015 260542b 4b4a015 90b81c5 cfd08d1 3a806f2 cfd08d1 3a806f2 abba0b6 3a806f2 cc859c9 3a806f2 cfd08d1 3a806f2 eae3852 3a806f2 4b4a015 6b0e51f 039130e 4b4a015 3a806f2 4b4a015 3a806f2 4b4a015 3a806f2 4b4a015 cc859c9 f1287e8 4b4a015 01e8a68 4b4a015 f1287e8 4b4a015 f1287e8 4b4a015 cfd08d1 4b4a015 cfd08d1 3a806f2 4b4a015 cfd08d1 cc859c9 4b4a015 3a806f2 039130e cfd08d1 f1287e8 4b4a015 3a806f2 4b4a015 cfd08d1 cc859c9 4b4a015 3a806f2 4b4a015 01e8a68 4b4a015 063b06e 3f14348 05fc347 3f14348 2992544 3f14348 cfd08d1 3f14348 2992544 3f14348 9710d36 3f14348 9710d36 0805af2 9710d36 1bd381b 2992544 1bd381b 2992544 3f14348 4b4a015 260542b 0805af2 063b06e 4b4a015 f52e9f0 85f845d 01e8a68 4b4a015 cc859c9 260542b 4b4a015 260542b 3a806f2 4b4a015 260542b 01e8a68 063b06e 01e8a68 039130e 01e8a68 f52e9f0 4b4a015 cc859c9 f52e9f0 3a806f2 cc859c9 cfd08d1 039130e cfd08d1 039130e cfd08d1 039130e cfd08d1 cc859c9 260542b 4b4a015 3a806f2 063b06e 0805af2 260542b 4b4a015 260542b 4b4a015 260542b 4b4a015 260542b 4b4a015 260542b 4b4a015 01e8a68 260542b 4b4a015 260542b 4b4a015 0805af2 260542b 4b4a015 05c88c1 4b4a015 12b2006 4b4a015 280890e 12b2006 4b4a015 260542b 90b81c5 260542b 4b4a015 260542b f1287e8 4b4a015 f1287e8 260542b 4b4a015 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel, PeftConfig
from huggingface_hub import login, create_repo, HfApi
import gradio as gr
import time
import shutil
from gradio_log import Log
import logging
MEMORY = int(os.getenv("MEMORY", 16)[:-2]) # 64Gi
CPU_CORES = int(os.getenv("CPU_CORES", 4)) # 4
SPACE_AUTHOR_NAME = os.getenv("SPACE_AUTHOR_NAME", "Steven10429") # str
SPACE_REPO_NAME = os.getenv("SPACE_REPO_NAME", "apply_lora_and_quantize") # str
SPACE_ID = os.getenv("SPACE_ID", "apply_lora_and_quantize") # str
# 全局日志
log = logging.getLogger("space_convert")
log.setLevel(logging.INFO)
log.addHandler(logging.StreamHandler())
log.addHandler(logging.FileHandler("convert.log"))
def timeit(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
log.info(f"{func.__name__}: {end_time - start_time:.2f} s")
return result
return wrapper
@timeit
def get_model_size_in_gb(model_name):
"""通过 Hugging Face Hub 元数据估算模型大小(GB)"""
try:
api = HfApi()
model_info = api.model_info(model_name)
# 使用 safetensors 大小(不假定文件扩展名)
return model_info.safetensors.total / (1024 ** 3)
except Exception as e:
log.error(f"Unable to estimate model size: {e}")
return 1 # 默认值
@timeit
def check_system_resources(model_name):
"""检查系统资源,决定使用 CPU 或 GPU"""
log.info("Checking system resources...")
log.info(f"Total CPU cores: {CPU_CORES}")
log.info(f"Total system memory: {MEMORY}GB")
model_size_gb = get_model_size_in_gb(model_name)
required_memory_gb = model_size_gb * 2.5
log.info(f"Estimated required memory for model: {required_memory_gb:.1f}GB")
# if torch.cuda.is_available(): # failed with torch complie without GPU FLAG
# gpu_name = torch.cuda.get_device_name(0)
# gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3)
# log.info(f"Detected GPU: {gpu_name} with {gpu_memory_gb:.1f}GB memory")
# if gpu_memory_gb >= required_memory_gb:
# log.info("✅ Sufficient GPU memory available; using GPU.")
# return "cuda", gpu_memory_gb
# else:
# log.warning(f"⚠️ Insufficient GPU memory (requires {required_memory_gb:.1f}GB, found {gpu_memory_gb:.1f}GB).")
# else:
# log.error("❌ No GPU detected.")
# just use CPU, it's enough for merge and quantize
if MEMORY >= required_memory_gb:
log.info("✅ Sufficient CPU memory available; using CPU.")
return "cpu", MEMORY
else:
log.warning(f"⚠️ Insufficient CPU memory (requires {required_memory_gb:.1f}GB, found {MEMORY}GB).")
log.error("❌ No CPU detected.")
log.error("Will try low memory mode, but it may fail.")
return "cpu", MEMORY
@timeit
def setup_environment(model_name):
"""选择模型转换时使用的设备"""
try:
device, _ = check_system_resources(model_name)
except Exception as e:
log.error(f"Resource check failed: {e}. Defaulting to CPU.")
device = "cpu"
return device
@timeit
def create_hf_repo(repo_name, private=True):
"""创建 Hugging Face 仓库(如果不存在的话)"""
try:
api = HfApi()
# 如果仓库已存在,则尝试附加索引直到名称可用
if api.repo_exists(repo_name):
retry_index = 0
repo_name_with_index = repo_name
while api.repo_exists(repo_name_with_index):
retry_index += 1
log.info(f"Repository {repo_name_with_index} exists; trying {repo_name}_{retry_index}")
repo_name_with_index = f"{repo_name}_{retry_index}"
repo_name = repo_name_with_index
repo_url = create_repo(repo_name, private=private)
log.info(f"Repository created successfully: {repo_url}")
return repo_name
except Exception as e:
log.error(f"Failed to create repository: {e}")
raise
@timeit
def download_and_merge_model(base_model_name, lora_model_name, output_dir, device):
"""
1. 先加载 adapter 的 tokenizer 获取其词表大小
2. 加载 base tokenizer 用于后续合并词表
3. 加载 base 模型,并将嵌入层调整至 adapter 词表大小
4. 使用高层 API 加载 LoRA adapter 并合并其权重
5. 求 base 与 adapter tokenizer 的词表并取并集,扩展 tokenizer
6. 调整合并模型嵌入层尺寸并保存
"""
os.makedirs("temp", exist_ok=True)
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
log.info("Loading base model...")
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, quantization_config=bnb_config, cache_dir="temp")
log.info("Loading adapter tokenizer...")
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto", force_download=True)
log.info("Resizing token embeddings...")
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
log.info("Loading LoRA adapter...")
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, quantization_config=bnb_config, cache_dir="temp")
log.info("Merging and unloading model...")
model = peft_model.merge_and_unload()
log.info("Saving model...")
model.save_pretrained(output_dir)
adapter_tokenizer.save_pretrained(output_dir)
del model, peft_model
shutil.rmtree("temp") # to save space due to huggingface space limit(50GB)
return output_dir
@timeit
def clone_llamacpp_and_download_build():
"""克隆 llama.cpp 并下载最新构建"""
llamacpp_repo = "https://github.com/ggerganov/llama.cpp.git"
llamacpp_dir = os.path.join(os.getcwd(), "llama.cpp")
if not os.path.exists(llamacpp_dir):
log.info(f"Cloning llama.cpp from {llamacpp_repo}...")
os.system(f"git clone {llamacpp_repo} {llamacpp_dir}")
log.info("Building llama.cpp...")
build_dir = os.path.join(llamacpp_dir, "build")
os.makedirs(build_dir, exist_ok=True)
"""
cmake -B build
cmake --build build --config Release
"""
# 进入构建目录并执行 cmake 和 make
os.chdir(build_dir)
os.system("cmake -B build")
os.system("cmake --build build --config Release")
log.info("llama.cpp build completed.")
# 返回到原始目录
os.chdir(os.path.dirname(llamacpp_dir))
def remove_illegal_chars_in_path(text):
return text.replace(".", "_").replace(":", "_").replace("/", "_")
@timeit
def quantize(model_path, repo_id, quant_method=None):
"""
利用 llama-cpp-python 对模型进行量化,并上传到 Hugging Face Hub。
使用的量化预设:
- 8-bit: Q8_0
- 4-bit: Q4_K_M 或 Q4_K_L
- 2-bit: Q2_K_L
模型输入(model_path)应为全精度(例如 fp16)的 GGUF 文件,
输出文件将保存为 <model_path>_q{bits}_{quant_method}
"""
# 使用llama.cpp的转换工具
llamacpp_dir = os.path.join(os.getcwd(), "llama.cpp")
if not os.path.exists(llamacpp_dir):
clone_llamacpp_and_download_build()
# 确保 model_output 目录存在
model_output_dir = f"{model_path}/quantized/"
os.makedirs(model_output_dir, exist_ok=True)
# 中间文件保存在 model_output 目录下
guff_8_path =f"./{repo_id}-q8_0.gguf"
if not os.path.exists(guff_8_path):
log.info(f"正在将模型转换为GGML格式")
convert_script = os.path.join(llamacpp_dir, "convert_hf_to_gguf.py")
convert_cmd = f"python {convert_script} {model_path} --outfile {guff_8_path} --outtype q8_0"
print(f"syscall:[{convert_cmd}]")
os.system(convert_cmd)
else:
log.info(f"GGML中间文件已存在,跳过转换")
if quant_method.lower() == "q8_0":
return guff_8_path # for upload to hub
# 最终文件保存在 model_output 目录下
final_path = os.path.join(model_output_dir, f"{repo_id}-{quant_method}.gguf")
log.info(f"正在进行{quant_method}量化")
quantize_bin = os.path.join(llamacpp_dir, "build", "bin", "llama-quantize")
quant_cmd = f"{quantize_bin} {guff_8_path} {final_path} {quant_method}"
print(f"syscall:[{quant_cmd}]")
if not os.path.exists(final_path):
os.system(quant_cmd)
else:
log.info(f"{quant_method}量化文件已存在,跳过量化")
return None
return final_path
def create_readme(repo_name, base_model_name, lora_model_name, quant_methods):
readme_path = os.path.join("output", repo_name, "README.md")
readme_template = """---
tags:
- autotrain
- text-generation-inference
- text-generation
- peft{quantization}
library_name: transformers
base_model: {base_model_name}{lora_model_name}
widget:
- messages:
- role: user
content: What is your favorite condiment?
license: other
---
# Model
{repo_name}
## Details:
- base_model: [{base_model_name}](https://huggingface.co/{base_model_name})
- lora_model: [{lora_model_name}](https://huggingface.co/{lora_model_name})
- quant_methods: {quant_methods}
- created_at: {created_at}
- created_by: [Steven10429/apply_lora_and_quantize](https://github.com/Steven10429/apply_lora_and_quantize)
""".format(
quantization="\n- quantization" if len(quant_methods) > 0 else "",
base_model_name=base_model_name,
lora_model_name=lora_model_name,
repo_name=repo_name,
quant_methods=quant_methods,
created_at=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),
)
with open(readme_path, "w") as f:
f.write(readme_template)
@timeit
def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf_token):
"""
主处理函数:
1. 登录并(必要时)创建 Hugging Face 仓库;
2. 设置设备;
3. 下载并合并 base 模型与 LoRA adapter;
4. 异步上传合并后的模型;
5. 同时启动四个量化任务(8-bit、2-bit、4-bit 两种模式);
6. 最后统一等待所有 Future 完成,再返回日志。
"""
try:
if hf_token.strip().lower() == "auto":
hf_token = os.getenv("HF_TOKEN")
elif hf_token.startswith("hf_"):
os.environ["HF_TOKEN"] = hf_token
login(hf_token)
api = HfApi(token=hf_token)
username = api.whoami()["name"]
if base_model_name.strip().lower() == "auto":
adapter_config = PeftConfig.from_pretrained(lora_model_name)
base_model_name = adapter_config.base_model_name_or_path
if repo_name.strip().lower() == "auto":
repo_name = f"{base_model_name.split('/')[-1]}_{lora_model_name.split('/')[-1]}"
repo_name = remove_illegal_chars_in_path(repo_name)
device = setup_environment(base_model_name)
repo_name = create_hf_repo(repo_name)
output_dir = os.path.join(".", "output", repo_name)
log.info("Starting model merge process...")
model_path = download_and_merge_model(base_model_name, lora_model_name, output_dir, device)
create_readme(repo_name, base_model_name, lora_model_name, quant_methods)
# 上传合并后的模型和量化模型
api.upload_large_folder(
folder_path=model_path,
repo_id=repo_name,
repo_type="model",
num_workers=os.cpu_count() if os.cpu_count() > 4 else 4,
print_report_every=10,
)
log.info("Upload completed.")
if len(quant_methods) > 0:
quantize(output_dir, repo_name, "Q8_0")
# remove model for space limit
shutil.rmtree(model_path)
log.info("Removed model from local")
os.makedirs(os.path.join(output_dir, "quantized"), exist_ok=True)
if len(quant_methods) > 0:
for quant_method in quant_methods:
quantize(output_dir, repo_name, quant_method=quant_method)
os.system(f"mv ./{repo_name}-f16.gguf ./{output_dir}/quantized/")
api.upload_large_folder(
folder_path=os.path.join(output_dir, "quantized"),
repo_id=repo_name,
repo_type="model",
num_workers=os.cpu_count() if os.cpu_count() > 4 else 4,
print_report_every=10,
)
# rm -rf model_path
shutil.rmtree(model_path)
log.info("Removed model from local")
except Exception as e:
error_message = f"Error during processing: {e}"
log.error(error_message)
raise e
@timeit
def create_ui():
"""创建 Gradio 界面,仅展示日志"""
with gr.Blocks(title="Model Merge & Quantization Tool") as app:
gr.Markdown("""
# 🤗 Model Merge and Quantization Tool
This tool merges a base model with a LoRA adapter, creates 8-bit, 4-bit and 2-bit quantized versions
(using guff's quantization: Q8_0, Q2_K_L, Q4_K_M, Q4_K_L), and uploads them to the Hugging Face Hub.
""")
with gr.Row():
with gr.Column():
base_model = gr.Textbox(
label="Base Model Path",
placeholder="e.g., Qwen/Qwen2.5-14B-Instruct",
value="Auto"
)
lora_model = gr.Textbox(
label="LoRA Model Path",
placeholder="Enter the path to your LoRA model"
)
repo_name = gr.Textbox(
label="Hugging Face Repository Name",
placeholder="Enter the repository name to create",
value="Auto",
)
quant_method = gr.CheckboxGroup(
choices=["Q2_K", "Q4_K", "IQ4_NL", "Q5_K_M", "Q6_K", "Q8_0"],
value=["Q2_K", "Q4_K", "IQ4_NL", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method"
)
hf_token = gr.Textbox(
label="Hugging Face Token",
placeholder="Enter your Hugging Face Token",
value="Auto",
type="password"
)
convert_btn = gr.Button("Start Conversion", variant="primary")
with gr.Column():
Log("convert.log", dark=True, xterm_font_size=12)
convert_btn.click(
fn=process_model,
inputs=[base_model, lora_model, repo_name, quant_method, hf_token],
)
return app
if __name__ == "__main__":
app = create_ui()
app.queue()
app.launch()
|