File size: 42,536 Bytes
61b850a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 |
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#define _USE_MATH_DEFINES // For M_PI on MSVC
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <fstream>
#include <map>
#include <regex>
#include <string>
#include <thread>
#include <vector>
//
// Terminal utils
//
#define SQR(X) ((X) * (X))
#define UNCUBE(x) x < 48 ? 0 : x < 115 ? 1 : (x - 35) / 40
/**
* Quantizes 24-bit RGB to xterm256 code range [16,256).
*/
static int rgb2xterm256(int r, int g, int b) {
unsigned char cube[] = {0, 0137, 0207, 0257, 0327, 0377};
int av, ir, ig, ib, il, qr, qg, qb, ql;
av = r * .299 + g * .587 + b * .114 + .5;
ql = (il = av > 238 ? 23 : (av - 3) / 10) * 10 + 8;
qr = cube[(ir = UNCUBE(r))];
qg = cube[(ig = UNCUBE(g))];
qb = cube[(ib = UNCUBE(b))];
if (SQR(qr - r) + SQR(qg - g) + SQR(qb - b) <=
SQR(ql - r) + SQR(ql - g) + SQR(ql - b))
return ir * 36 + ig * 6 + ib + 020;
return il + 0350;
}
static std::string set_xterm256_foreground(int r, int g, int b) {
int x = rgb2xterm256(r, g, b);
std::ostringstream oss;
oss << "\033[38;5;" << x << "m";
return oss.str();
}
const std::vector<std::string> k_colors = {
set_xterm256_foreground(220, 5, 12),
set_xterm256_foreground(232, 96, 28),
set_xterm256_foreground(241, 147, 45),
set_xterm256_foreground(246, 193, 65),
set_xterm256_foreground(247, 240, 86),
set_xterm256_foreground(144, 201, 135),
set_xterm256_foreground( 78, 178, 101),
};
static void print_usage(int, char ** argv) {
LOG("\nexample usage:\n");
LOG("\n %s -m model.gguf -p \"Hello!\"\n", argv[0]);
LOG("\n");
}
struct wav_header {
char riff[4] = {'R', 'I', 'F', 'F'};
uint32_t chunk_size;
char wave[4] = {'W', 'A', 'V', 'E'};
char fmt[4] = {'f', 'm', 't', ' '};
uint32_t fmt_chunk_size = 16;
uint16_t audio_format = 1; // PCM
uint16_t num_channels = 1; // Mono
uint32_t sample_rate;
uint32_t byte_rate;
uint16_t block_align;
uint16_t bits_per_sample = 16;
char data[4] = {'d', 'a', 't', 'a'};
uint32_t data_size;
};
static void save_wav16(const std::string & fname, const std::vector<float> & data, int sample_rate) {
std::ofstream file(fname, std::ios::binary);
if (!file) {
LOG_ERR("%s: Failed to open file '%s' for writing", __func__, fname.c_str());
return;
}
wav_header header;
header.sample_rate = sample_rate;
header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8);
header.block_align = header.num_channels * (header.bits_per_sample / 8);
header.data_size = data.size() * (header.bits_per_sample / 8);
header.chunk_size = 36 + header.data_size;
file.write(reinterpret_cast<const char*>(&header), sizeof(header));
for (const auto & sample : data) {
int16_t pcm_sample = static_cast<int16_t>(std::clamp(sample * 32767.0, -32768.0, 32767.0));
file.write(reinterpret_cast<const char*>(&pcm_sample), sizeof(pcm_sample));
}
file.close();
}
static void fill_hann_window(int length, bool periodic, float * output) {
int offset = -1;
if (periodic) {
offset = 0;
}
for (int i = 0; i < length; i++) {
output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
}
}
// very poor-man fft
static void twiddle(float * real, float * imag, int k, int N) {
float angle = 2 * M_PI * k / N;
*real = cos(angle);
*imag = sin(angle);
}
static void irfft(int n, const float * inp_cplx, float * out_real) {
int N = n / 2 + 1;
std::vector<float> real_input(N);
std::vector<float> imag_input(N);
for (int i = 0; i < N; ++i) {
real_input[i] = inp_cplx[2 * i];
imag_input[i] = inp_cplx[2 * i + 1];
}
std::vector<float> real_output(n);
std::vector<float> imag_output(n);
for (int k = 0; k < n; ++k) {
real_output[k] = 0.0f;
imag_output[k] = 0.0f;
for (int m = 0; m < N; ++m) {
float twiddle_real;
float twiddle_imag;
twiddle(&twiddle_real, &twiddle_imag, k * m, n);
real_output[k] += real_input[m] * twiddle_real - imag_input[m] * twiddle_imag;
imag_output[k] += real_input[m] * twiddle_imag + imag_input[m] * twiddle_real;
}
}
for (int i = 0; i < n; ++i) {
out_real[i] = real_output[i] / N;
}
}
//
// y = torch.nn.functional.fold(
// data, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length),
// )[:, 0, 0, pad:-pad]
//
// data.shape = torch.Size([1, 1280, 261])
// output_size = 84480
// win_length = 1280
// hop_length = 320
// pad = 480
//
static void fold(const std::vector<float> & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector<float> & output) {
int64_t output_height = n_out;
int64_t kernel_w = n_win;
int64_t stride_w = n_hop;
int64_t width = n_out;
output.resize(width, 0.0f);
int64_t col_idx = 0;
for (int64_t w_col = 0; w_col < width; ++w_col) {
int64_t start = w_col * stride_w - n_pad;
int64_t end = start + kernel_w;
for (int64_t w_im = start; w_im < end; ++w_im) {
if (w_im >= 0 && w_im < output_height && col_idx < (int64_t) data.size()) {
output[w_im] += data[col_idx];
}
col_idx++;
}
}
output.resize(n_out - 2 * n_pad);
}
// TODO: not optimized at all
static std::vector<float> embd_to_audio(
const float * embd,
const int n_codes,
const int n_embd,
const int n_thread) {
const int n_fft = 1280;
const int n_hop = 320;
const int n_win = 1280;
const int n_pad = (n_win - n_hop)/2;
const int n_out = (n_codes - 1)*n_hop + n_win;
std::vector<float> hann(n_fft);
fill_hann_window(hann.size(), true, hann.data());
int n_spec = n_embd*n_codes;
std::vector<float> E (n_spec);
std::vector<float> S (n_spec);
std::vector<float> ST(n_spec);
for (int l = 0; l < n_codes; ++l) {
for (int k = 0; k < n_embd; ++k) {
E[k*n_codes + l] = embd[l*n_embd + k];
}
}
for (int k = 0; k < n_embd/2; ++k) {
for (int l = 0; l < n_codes; ++l) {
float mag = E[(k )*n_codes + l];
float phi = E[(k + n_embd/2)*n_codes + l];
mag = exp(mag);
if (mag > 1e2) {
mag = 1e2;
}
S[2*(k*n_codes + l) + 0] = mag*cosf(phi);
S[2*(k*n_codes + l) + 1] = mag*sinf(phi);
}
}
for (int l = 0; l < n_codes; ++l) {
for (int k = 0; k < n_embd/2; ++k) {
ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0];
ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1];
}
}
std::vector<float> res (n_codes*n_fft);
std::vector<float> hann2(n_codes*n_fft);
std::vector<std::thread> workers(n_thread);
for (int i = 0; i < n_thread; ++i) {
workers[i] = std::thread([&, i]() {
for (int l = i; l < n_codes; l += n_thread) {
irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft);
for (int j = 0; j < n_fft; ++j) {
res [l*n_fft + j] *= hann[j];
hann2[l*n_fft + j] = hann[j] * hann[j];
}
}
});
}
for (int i = 0; i < n_thread; ++i) {
workers[i].join();
}
std::vector<float> audio;
std::vector<float> env;
fold(res, n_out, n_win, n_hop, n_pad, audio);
fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once
for (size_t i = 0; i < audio.size(); ++i) {
audio[i] /= env[i];
}
return audio;
}
static const std::map<int, std::string> ones = {
{0, "zero"}, {1, "one"}, {2, "two"}, {3, "three"}, {4, "four"},
{5, "five"}, {6, "six"}, {7, "seven"}, {8, "eight"}, {9, "nine"},
{10, "ten"}, {11, "eleven"}, {12, "twelve"}, {13, "thirteen"}, {14, "fourteen"},
{15, "fifteen"}, {16, "sixteen"}, {17, "seventeen"}, {18, "eighteen"}, {19, "nineteen"}
};
static const std::map<int, std::string> tens = {
{2, "twenty"}, {3, "thirty"}, {4, "forty"}, {5, "fifty"},
{6, "sixty"}, {7, "seventy"}, {8, "eighty"}, {9, "ninety"}
};
// Convert a number less than 1000 to words
static std::string convert_less_than_thousand(int num) {
std::string result;
if (num >= 100) {
result += ones.at(num / 100) + " hundred ";
num %= 100;
}
if (num >= 20) {
result += tens.at(num / 10);
if (num % 10 > 0) {
result += "-" + ones.at(num % 10);
}
} else if (num > 0) {
result += ones.at(num);
}
return result;
}
static std::string number_to_words(const std::string & number_str) {
try {
size_t decimal_pos = number_str.find('.');
std::string integer_part = number_str.substr(0, decimal_pos);
int int_number = std::stoi(integer_part);
std::string result;
if (int_number == 0) {
result = "zero";
} else {
if (int_number >= 1000000000) {
int billions = int_number / 1000000000;
result += convert_less_than_thousand(billions) + " billion ";
int_number %= 1000000000;
}
if (int_number >= 1000000) {
int millions = int_number / 1000000;
result += convert_less_than_thousand(millions) + " million ";
int_number %= 1000000;
}
if (int_number >= 1000) {
int thousands = int_number / 1000;
result += convert_less_than_thousand(thousands) + " thousand ";
int_number %= 1000;
}
if (int_number > 0) {
result += convert_less_than_thousand(int_number);
}
}
// Handle decimal part
if (decimal_pos != std::string::npos) {
result += " point";
std::string decimal_part = number_str.substr(decimal_pos + 1);
for (char digit : decimal_part) {
result += " " + ones.at(digit - '0');
}
}
return result;
} catch (const std::exception& e) {
// Skip if fails
return " ";
}
}
static std::string replace_numbers_with_words(const std::string & input_text) {
std::regex number_pattern(R"(\d+(\.\d+)?)");
std::string result;
auto it = std::sregex_iterator(input_text.begin(), input_text.end(), number_pattern);
auto end = std::sregex_iterator();
size_t last_pos = 0;
for (std::sregex_iterator i = it; i != end; ++i) {
const std::smatch& match = *i;
result.append(input_text, last_pos, match.position() - last_pos);
result.append(number_to_words(match.str()));
last_pos = match.position() + match.length();
}
result.append(input_text, last_pos);
return result;
}
// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39
static std::string process_text(const std::string & text) {
// For now I skipped text romanization as I am unsure how to handle
// uroman and MeCab implementations in C++
// maybe something like https://github.com/anyascii/anyascii/ could work.
// currently only English would be supported in this function
std::string processed_text = replace_numbers_with_words(text);
std::transform(processed_text.begin(), processed_text.end(),
processed_text.begin(), ::tolower);
std::regex special_chars(R"([-_/,\.\\])");
processed_text = std::regex_replace(processed_text, special_chars, " ");
std::regex non_alpha(R"([^a-z\s])");
processed_text = std::regex_replace(processed_text, non_alpha, "");
std::regex multiple_spaces(R"(\s+)");
processed_text = std::regex_replace(processed_text, multiple_spaces, " ");
processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), "");
/*
Replace spaces with the separator token same as in line 365
for (auto & c : prompt_user) {
if (c == ' ') {
prompt_clean += "<|text_sep|>";
*/
processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>");
return processed_text;
}
static void prompt_add(llama_tokens & prompt, llama_token token) {
prompt.push_back(token);
}
static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) {
prompt.insert(prompt.end(), tokens.begin(), tokens.end());
}
static void prompt_add(llama_tokens & prompt, const llama_vocab * vocab, const std::string & txt, bool add_special, bool parse_special) {
auto tmp = common_tokenize(vocab, txt, add_special, parse_special);
prompt_add(prompt, tmp);
}
static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
prompt.clear();
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
}
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str) {
const std::string& delimiter = "<|text_sep|>";
std::vector<llama_token> result;
size_t start = 0;
size_t end = str.find(delimiter);
//first token is always a newline, as it was not previously added
result.push_back(common_tokenize(vocab, "\n", false, true)[0]);
while (end != std::string::npos) {
std::string current_word = str.substr(start, end - start);
auto tmp = common_tokenize(vocab, current_word, false, true);
result.push_back(tmp[0]);
start = end + delimiter.length();
end = str.find(delimiter, start);
}
// Add the last part
std::string current_word = str.substr(start);
auto tmp = common_tokenize(vocab, current_word, false, true);
if (tmp.size() > 0) {
result.push_back(tmp[0]);
}
return result;
}
int main(int argc, char ** argv) {
common_params params;
params.prompt = "";
params.n_predict = 4096;
params.n_batch = 8192;
params.n_ctx = 8192;
params.sampling.top_k = 4;
params.sampling.samplers = { COMMON_SAMPLER_TYPE_TOP_K, };
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_TTS, print_usage)) {
return 1;
}
const int n_parallel = params.n_parallel;
const int n_predict = params.n_predict;
common_init();
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model_ttc = NULL; // text-to-codes
llama_model * model_cts = NULL; // codes-to-speech
llama_context * ctx_ttc = NULL;
llama_context * ctx_cts = NULL;
common_init_result llama_init_ttc = common_init_from_params(params);
model_ttc = llama_init_ttc.model.get();
ctx_ttc = llama_init_ttc.context.get();
const llama_vocab * vocab = llama_model_get_vocab(model_ttc);
// TODO: refactor in a common struct
params.model = params.vocoder.model;
params.model_url = params.vocoder.model_url;
params.hf_repo = params.vocoder.hf_repo;
params.hf_file = params.vocoder.hf_file;
params.embedding = true;
common_init_result llama_init_cts = common_init_from_params(params);
model_cts = llama_init_cts.model.get();
ctx_cts = llama_init_cts.context.get();
std::vector<common_sampler *> smpl(n_parallel);
for (int i = 0; i < n_parallel; ++i) {
params.sampling.no_perf = (i != 0);
params.sampling.seed = params.sampling.seed + 1;
smpl[i] = common_sampler_init(model_ttc, params.sampling);
}
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl[0]));
LOG_INF("sampler params: \n%s\n", params.sampling.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl[0]).c_str());
LOG_INF("%s: loading done\n", __func__);
const auto t_main_start = ggml_time_us();
std::vector<llama_token> codes;
std::vector<llama_token> guide_tokens;
// process prompt and generate voice codes
{
LOG_INF("%s: constructing prompt ..\n", __func__);
std::vector<llama_token> prompt_inp;
prompt_init(prompt_inp, vocab);
prompt_add(prompt_inp, vocab, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);
// convert the input text into the necessary format expected by OuteTTS
{
std::string prompt_clean = process_text(params.prompt);
if (params.vocoder.use_guide_tokens) {
guide_tokens = prepare_guide_tokens(vocab, prompt_clean);
}
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
prompt_add(prompt_inp, vocab, prompt_clean, false, true);
}
prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);
// disabled to save time on tokenizing each time
// TODO: load voices from the json files
#if 0
const std::string voice_data = R"(<|audio_start|>
the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|>
overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|>
package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|>
from<|t_0.19|><|code_start|><|604|><|782|><|1682|><|872|><|1532|><|1600|><|1036|><|1761|><|647|><|1554|><|1371|><|653|><|1595|><|950|><|code_end|>
just<|t_0.25|><|code_start|><|1782|><|1670|><|317|><|786|><|1748|><|631|><|599|><|1155|><|1364|><|1524|><|36|><|1591|><|889|><|1535|><|541|><|440|><|1532|><|50|><|870|><|code_end|>
two<|t_0.24|><|code_start|><|1681|><|1510|><|673|><|799|><|805|><|1342|><|330|><|519|><|62|><|640|><|1138|><|565|><|1552|><|1497|><|1552|><|572|><|1715|><|1732|><|code_end|>
people<|t_0.39|><|code_start|><|593|><|274|><|136|><|740|><|691|><|633|><|1484|><|1061|><|1138|><|1485|><|344|><|428|><|397|><|1562|><|645|><|917|><|1035|><|1449|><|1669|><|487|><|442|><|1484|><|1329|><|1832|><|1704|><|600|><|761|><|653|><|269|><|code_end|>
is<|t_0.16|><|code_start|><|566|><|583|><|1755|><|646|><|1337|><|709|><|802|><|1008|><|485|><|1583|><|652|><|10|><|code_end|>
pretty<|t_0.32|><|code_start|><|1818|><|1747|><|692|><|733|><|1010|><|534|><|406|><|1697|><|1053|><|1521|><|1355|><|1274|><|816|><|1398|><|211|><|1218|><|817|><|1472|><|1703|><|686|><|13|><|822|><|445|><|1068|><|code_end|>
remarkable<|t_0.68|><|code_start|><|230|><|1048|><|1705|><|355|><|706|><|1149|><|1535|><|1787|><|1356|><|1396|><|835|><|1583|><|486|><|1249|><|286|><|937|><|1076|><|1150|><|614|><|42|><|1058|><|705|><|681|><|798|><|934|><|490|><|514|><|1399|><|572|><|1446|><|1703|><|1346|><|1040|><|1426|><|1304|><|664|><|171|><|1530|><|625|><|64|><|1708|><|1830|><|1030|><|443|><|1509|><|1063|><|1605|><|1785|><|721|><|1440|><|923|><|code_end|>
sure<|t_0.36|><|code_start|><|792|><|1780|><|923|><|1640|><|265|><|261|><|1525|><|567|><|1491|><|1250|><|1730|><|362|><|919|><|1766|><|543|><|1|><|333|><|113|><|970|><|252|><|1606|><|133|><|302|><|1810|><|1046|><|1190|><|1675|><|code_end|>
i<|t_0.08|><|code_start|><|123|><|439|><|1074|><|705|><|1799|><|637|><|code_end|>
have<|t_0.16|><|code_start|><|1509|><|599|><|518|><|1170|><|552|><|1029|><|1267|><|864|><|419|><|143|><|1061|><|0|><|code_end|>
some<|t_0.16|><|code_start|><|619|><|400|><|1270|><|62|><|1370|><|1832|><|917|><|1661|><|167|><|269|><|1366|><|1508|><|code_end|>
critiques<|t_0.60|><|code_start|><|559|><|584|><|1163|><|1129|><|1313|><|1728|><|721|><|1146|><|1093|><|577|><|928|><|27|><|630|><|1080|><|1346|><|1337|><|320|><|1382|><|1175|><|1682|><|1556|><|990|><|1683|><|860|><|1721|><|110|><|786|><|376|><|1085|><|756|><|1523|><|234|><|1334|><|1506|><|1578|><|659|><|612|><|1108|><|1466|><|1647|><|308|><|1470|><|746|><|556|><|1061|><|code_end|>
about<|t_0.29|><|code_start|><|26|><|1649|><|545|><|1367|><|1263|><|1728|><|450|><|859|><|1434|><|497|><|1220|><|1285|><|179|><|755|><|1154|><|779|><|179|><|1229|><|1213|><|922|><|1774|><|1408|><|code_end|>
some<|t_0.23|><|code_start|><|986|><|28|><|1649|><|778|><|858|><|1519|><|1|><|18|><|26|><|1042|><|1174|><|1309|><|1499|><|1712|><|1692|><|1516|><|1574|><|code_end|>
of<|t_0.07|><|code_start|><|197|><|716|><|1039|><|1662|><|64|><|code_end|>
the<|t_0.08|><|code_start|><|1811|><|1568|><|569|><|886|><|1025|><|1374|><|code_end|>
gameplay<|t_0.48|><|code_start|><|1269|><|1092|><|933|><|1362|><|1762|><|1700|><|1675|><|215|><|781|><|1086|><|461|><|838|><|1022|><|759|><|649|><|1416|><|1004|><|551|><|909|><|787|><|343|><|830|><|1391|><|1040|><|1622|><|1779|><|1360|><|1231|><|1187|><|1317|><|76|><|997|><|989|><|978|><|737|><|189|><|code_end|>
aspects<|t_0.56|><|code_start|><|1423|><|797|><|1316|><|1222|><|147|><|719|><|1347|><|386|><|1390|><|1558|><|154|><|440|><|634|><|592|><|1097|><|1718|><|712|><|763|><|1118|><|1721|><|1311|><|868|><|580|><|362|><|1435|><|868|><|247|><|221|><|886|><|1145|><|1274|><|1284|><|457|><|1043|><|1459|><|1818|><|62|><|599|><|1035|><|62|><|1649|><|778|><|code_end|>
but<|t_0.20|><|code_start|><|780|><|1825|><|1681|><|1007|><|861|><|710|><|702|><|939|><|1669|><|1491|><|613|><|1739|><|823|><|1469|><|648|><|code_end|>
its<|t_0.09|><|code_start|><|92|><|688|><|1623|><|962|><|1670|><|527|><|599|><|code_end|>
still<|t_0.27|><|code_start|><|636|><|10|><|1217|><|344|><|713|><|957|><|823|><|154|><|1649|><|1286|><|508|><|214|><|1760|><|1250|><|456|><|1352|><|1368|><|921|><|615|><|5|><|code_end|>
really<|t_0.36|><|code_start|><|55|><|420|><|1008|><|1659|><|27|><|644|><|1266|><|617|><|761|><|1712|><|109|><|1465|><|1587|><|503|><|1541|><|619|><|197|><|1019|><|817|><|269|><|377|><|362|><|1381|><|507|><|1488|><|4|><|1695|><|code_end|>
enjoyable<|t_0.49|><|code_start|><|678|><|501|><|864|><|319|><|288|><|1472|><|1341|><|686|><|562|><|1463|><|619|><|1563|><|471|><|911|><|730|><|1811|><|1006|><|520|><|861|><|1274|><|125|><|1431|><|638|><|621|><|153|><|876|><|1770|><|437|><|987|><|1653|><|1109|><|898|><|1285|><|80|><|593|><|1709|><|843|><|code_end|>
and<|t_0.15|><|code_start|><|1285|><|987|><|303|><|1037|><|730|><|1164|><|502|><|120|><|1737|><|1655|><|1318|><|code_end|>
it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><|code_end|>
looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|>
lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)";
auto tmp = common_tokenize(vocab, voice_data, false, true);
printf("\n\n");
for (int i = 0; i < tmp.size(); ++i) {
printf("%d, ", tmp[i]);
}
printf("\n\n");
#else
prompt_add(prompt_inp, llama_tokens {
151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585,
152460, 153375, 151670, 198, 74455, 155808, 151669, 151799,
151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470,
151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040,
153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691,
153368, 153437, 151670, 198, 1722, 155828, 151669, 152607,
152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198,
152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207,
152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267,
153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179,
153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904,
152311, 151670, 198, 1499, 155791, 151669, 152276, 152454,
153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226,
153043, 152325, 153267, 152622, 151670, 198, 4250, 155797,
151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271,
152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213,
152112, 153204, 151722, 152542, 151670, 198, 19789, 155796,
151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002,
152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224,
152244, 153387, 153404, 151670, 198, 16069, 155811, 151669,
152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733,
152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589,
152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504,
153376, 152272, 152433, 152325, 151941, 151670, 198, 285,
155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381,
152474, 152680, 152157, 153255, 152324, 151682, 151670, 198,
32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682,
152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488,
153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685,
152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669,
151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459,
153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609,
152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470,
152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018,
152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736,
153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457,
152393, 153112, 152595, 151670, 198, 19098, 155808, 151669,
152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239,
153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673,
152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482,
152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795,
152111, 152746, 152377, 153471, 152309, 151670, 198, 19016,
155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701,
152939, 152536, 152091, 151815, 152733, 151672, 151670, 198,
14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042,
153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670,
198, 36996, 8303, 155832, 151669, 152231, 152256, 152835,
152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600,
151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847,
153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458,
152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250,
152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418,
152228, 152733, 151670, 198, 9096, 155801, 151669, 151698,
153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106,
152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851,
152901, 152885, 152594, 153446, 153080, 151670, 198, 14689,
155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191,
151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384,
153364, 153188, 153246, 151670, 198, 1055, 155779, 151669,
151869, 152388, 152711, 153334, 151736, 151670, 198, 1782,
155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046,
151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605,
153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133,
152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581,
152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032,
152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409,
151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469,
152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230,
151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435,
152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540,
151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715,
153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450,
151670, 198, 8088, 155792, 151669, 152452, 153497, 153353,
152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285,
153411, 152495, 153141, 152320, 151670, 198, 1199, 155781,
151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271,
151670, 198, 43366, 155799, 151669, 152308, 151682, 152889,
152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180,
151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287,
151677, 151670, 198, 53660, 155808, 151669, 151727, 152092,
152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384,
151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691,
152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676,
153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350,
152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234,
153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678,
152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825,
152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957,
151752, 152265, 153381, 152515, 151670, 198, 437, 155787,
151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174,
151792, 153409, 153327, 152990, 151670, 198, 275, 155781,
151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974,
151670, 198, 94273, 155799, 151669, 152953, 152938, 153427,
152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331,
152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326,
152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268,
153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110,
152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444,
152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751,
152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499,
152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349,
151670,});
#endif
// print the prompt token-by-token
LOG("\n");
for (auto id : prompt_inp) {
LOG("%s", common_token_to_piece(ctx_ttc, id).c_str());
}
LOG_INF("%s: prompt size: %d\n", __func__, (int) prompt_inp.size());
LOG("\n");
// create a llama_batch
// we use this object to submit token data for decoding
llama_batch batch = llama_batch_init(std::max(prompt_inp.size(), (size_t) n_parallel), 0, n_parallel);
std::vector<llama_seq_id> seq_ids(n_parallel, 0);
for (int32_t i = 0; i < n_parallel; ++i) {
seq_ids[i] = i;
}
// evaluate the initial prompt
for (size_t i = 0; i < prompt_inp.size(); ++i) {
common_batch_add(batch, prompt_inp[i], i, seq_ids, false);
}
GGML_ASSERT(batch.n_tokens == (int) prompt_inp.size());
// llama_decode will output logits only for the last token of the prompt
batch.logits[batch.n_tokens - 1] = true;
if (llama_decode(ctx_ttc, batch) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
if (n_parallel > 1) {
LOG_INF("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
}
llama_synchronize(ctx_ttc);
LOG_INF("%s: time for prompt: %.3f ms\n\n", __func__, (ggml_time_us() - t_main_start) / 1000.0f);
const auto t_dec_start = ggml_time_us();
// main loop
// remember the batch index of the last token for each parallel sequence
// we need this to determine which logits to sample from
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
int n_past = batch.n_tokens;
int n_decode = 0;
bool next_token_uses_guide_token = true;
while (n_decode <= n_predict) {
// prepare the next batch
common_batch_clear(batch);
// sample the next token for each parallel sequence / stream
for (int32_t i = 0; i < n_parallel; ++i) {
if (i_batch[i] < 0) {
// the stream has already finished
continue;
}
llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]);
//guide tokens help prevent hallucinations by forcing the TTS to use the correct word
if (!guide_tokens.empty() && next_token_uses_guide_token && !llama_vocab_is_control(vocab, new_token_id) && !llama_vocab_is_eog(vocab, new_token_id)) {
llama_token guide_token = guide_tokens[0];
guide_tokens.erase(guide_tokens.begin());
new_token_id = guide_token; //ensure correct word fragment is used
}
//this is the token id that always precedes a new word
next_token_uses_guide_token = (new_token_id == 198);
common_sampler_accept(smpl[i], new_token_id, true);
codes.push_back(new_token_id);
const auto * cands = common_sampler_get_candidates(smpl[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_vocab_is_eog(vocab, new_token_id) || n_decode == n_predict) {
std::string reason;
if (llama_vocab_is_eog(vocab, new_token_id)) {
reason = "eos";
} else {
reason = "n_predict";
}
i_batch[i] = -1;
LOG("\n");
if (n_parallel > 1) {
LOG_CNT("\n");
LOG_INF("%s: stream %d finished at n_past = %d, reason = '%s'\n", __func__, i, n_past, reason.c_str());
}
continue;
}
{
const float p = cands->data[cands->selected].p;
const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) ((3*p)*float(k_colors.size()))));
LOG_CNT("%s%d%s", k_colors[col].c_str(), i, "\033[0m");
//LOG_CNT("%d", i);
}
i_batch[i] = batch.n_tokens;
// push this new token for next evaluation
common_batch_add(batch, new_token_id, n_past, { i }, true);
}
// all streams are finished
if (batch.n_tokens == 0) {
break;
}
n_decode += 1;
n_past += 1;
// evaluate the current batch with the transformer model
if (llama_decode(ctx_ttc, batch)) {
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
return 1;
}
}
llama_batch_free(batch);
LOG("\n");
LOG_INF("%s: time for decoder: %.3f ms\n", __func__, (ggml_time_us() - t_dec_start) / 1000.0f);
}
common_perf_print(ctx_ttc, smpl[0]);
//std::vector<llama_token> codes = {198, 88225, 155856, 151669, 152205,
// 153064, 152537, 153421, 153209, 152524, 151689, 152993, 152438, 152695,
// 153091, 152945, 152829, 152534, 152934, 153020, 151997, 152263, 153010,
// 153146, 152399, 153208, 152496, 151793, 152848, 152263, 152571, 153286,
// 152227, 153300, 152934, 152263, 153208, 152263, 152965, 152430, 152296,
// 153146, 152920, 152376, 152556, 153363, 151775, 152044, 152972, 152690,
// 153379, 152368, 152233, 153422, 152490, 151996, 152022, 151694, 152061,
// 153238, 152539, 153356, 152640, 153021, 153123, 151962, 153094, 151670,
// 198, 20339, 13189, 155824, 151669, 152070, 152007, 152910, 151683,
// 152000, 152373, 152760, 152046, 151735, 152334, 152394, 153073, 152908,
// 151856, 151953, 153247, 153293, 151903, 153480, 153168, 152478, 153359,
// 153429, 151905, 151678, 152567, 152411, 152165, 152556, 153075, 153424,
// 151993, 152999, 153078, 152151, 152088, 153389, 152484, 151874, 151670,
// 198, 285, 155784, 151669, 152226, 152126, 152638, 153215, 151729,
// 152959, 153479, 153059, 151838, 151670, 198, 1782, 155783, 151669,
// 153288, 153055, 153314, 152497, 152962, 152741, 152076, 153253, 151670,
// 198, 471, 16488, 155825, 151669, 152060, 152916, 151893, 153469, 152501,
// 152080, 152743, 151932, 153161, 152096, 152761, 152698, 153401, 153242,
// 153336, 152441, 152838, 153467, 152706, 153496, 153310, 152422, 153360,
// 153115, 152763, 151998, 152373, 153450, 152554, 151968, 153323, 152055,
// 152468, 153111, 153358, 152813, 152010, 151770, 152823, 152960, 151670,
// 198, 22627, 155823, 151669, 152814, 152366, 153484, 152931, 153441,
// 152164, 152877, 152915, 153463, 151692, 152911, 152747, 152776, 151831,
// 153449, 151882, 152975, 152031, 152513, 153150, 152448, 152667, 153133,
// 153189, 152619, 153466, 152054, 152106, 153119, 152277, 152439, 153109,
// 152997, 152141, 153154, 153256, 153311, 151922, 151670, 198, 1055,
// 155781, 151669, 152633, 151850, 153060, 153270, 152560, 153348, 152729,
// 151670, 198, 25312, 155803, 151669, 152521, 153403, 152561, 153337,
// 153383, 152199, 153493, 153326, 151830, 152254, 152248, 152349, 152153,
// 153007, 151823, 153037, 152575, 152457, 152406, 152592, 153116, 153365,
// 153456, 151670, 198, 88225, 155817, 151669, 153271, 151925, 152218,
// 152418, 152253, 153140, 151903, 153151, 152626, 152338, 152647, 153464,
// 152785, 152768, 151711, 152037, 152033, 151804, 152216, 151701, 151855,
// 152348, 152995, 152955, 152905, 152342, 152340, 153391, 153453, 152418,
// 153415, 151990, 153083, 152884, 151670, 198, 151668, 198, 151645};
{
const std::string inp_txt = common_detokenize(ctx_ttc, codes, true);
LOG("\n");
LOG_INF("codes: '%s'\n", inp_txt.c_str());
LOG_INF("%s: codes size: %d\n", __func__, (int) codes.size());
}
// remove all non-audio tokens (i.e. < 151672 || > 155772)
codes.erase(std::remove_if(codes.begin(), codes.end(), [](llama_token t) { return t < 151672 || t > 155772; }), codes.end());
{
const std::string inp_txt = common_detokenize(ctx_ttc, codes, true);
LOG_INF("codes audio: '%s'\n", inp_txt.c_str());
LOG_INF("%s: codes audio size: %d\n", __func__, (int) codes.size());
}
for (auto & token : codes) {
token -= 151672;
}
const auto t_voc_start = ggml_time_us();
const int n_codes = codes.size();
llama_batch batch = llama_batch_init(n_codes, 0, 1);
for (size_t i = 0; i < codes.size(); ++i) {
common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits?
}
GGML_ASSERT(batch.n_tokens == n_codes);
if (llama_decode(ctx_cts, batch) != 0) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
return 1;
}
llama_synchronize(ctx_cts);
LOG_INF("%s: time for vocoder: %.3f ms\n", __func__, (ggml_time_us() - t_voc_start) / 1000.0f);
const auto t_spec_start = ggml_time_us();
#if 1
// spectral operations
const int n_embd = llama_model_n_embd(model_cts);
const float * embd = llama_get_embeddings(ctx_cts);
auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads);
#else
// read the spectrogram from a file for debugging purposes
std::vector<float> audio;
{
std::ifstream fin("out.bin", std::ios::binary);
if (!fin) {
LOG_ERR("%s: failed to open file '%s'\n", __func__, "out.bin");
return 1;
}
std::vector<float> embd;
int n_codes;
int n_embd;
fin.read(reinterpret_cast<char *>(&n_codes), sizeof(int));
fin.read(reinterpret_cast<char *>(&n_embd), sizeof(int));
embd.resize(n_codes * n_embd);
fin.read(reinterpret_cast<char *>(embd.data()), n_codes * n_embd * sizeof(float));
fin.close();
LOG_INF("%s: n_codes: %d, n_embd: %d\n", __func__, n_codes, n_embd);
audio = embd_to_audio(embd.data(), n_codes, n_embd, params.cpuparams.n_threads);
}
#endif
const std::string fname = "output.wav";
const int n_sr = 24000; // sampling rate
// zero out first 0.25 seconds
for (int i = 0; i < 24000/4; ++i) {
audio[i] = 0.0f;
}
LOG_INF("%s: time for spectral ops: %.3f ms\n", __func__, (ggml_time_us() - t_spec_start) / 1000.0f);
LOG_INF("%s: total time: %.3f ms\n", __func__, (ggml_time_us() - t_main_start) / 1000.0f);
save_wav16(fname, audio, n_sr);
LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str());
llama_backend_free();
return 0;
}
|