File size: 42,536 Bytes
61b850a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"

#define _USE_MATH_DEFINES // For M_PI on MSVC

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <fstream>
#include <map>
#include <regex>
#include <string>
#include <thread>
#include <vector>

//
// Terminal utils
//

#define SQR(X)    ((X) * (X))
#define UNCUBE(x) x < 48 ? 0 : x < 115 ? 1 : (x - 35) / 40

/**
 * Quantizes 24-bit RGB to xterm256 code range [16,256).
 */
static int rgb2xterm256(int r, int g, int b) {
    unsigned char cube[] = {0, 0137, 0207, 0257, 0327, 0377};
    int av, ir, ig, ib, il, qr, qg, qb, ql;
    av = r * .299 + g * .587 + b * .114 + .5;
    ql = (il = av > 238 ? 23 : (av - 3) / 10) * 10 + 8;
    qr = cube[(ir = UNCUBE(r))];
    qg = cube[(ig = UNCUBE(g))];
    qb = cube[(ib = UNCUBE(b))];
    if (SQR(qr - r) + SQR(qg - g) + SQR(qb - b) <=
        SQR(ql - r) + SQR(ql - g) + SQR(ql - b))
        return ir * 36 + ig * 6 + ib + 020;
    return il + 0350;
}

static std::string set_xterm256_foreground(int r, int g, int b) {
    int x = rgb2xterm256(r, g, b);
    std::ostringstream oss;
    oss << "\033[38;5;" << x << "m";
    return oss.str();
}

const std::vector<std::string> k_colors = {
    set_xterm256_foreground(220,   5,  12),
    set_xterm256_foreground(232,  96,  28),
    set_xterm256_foreground(241, 147,  45),
    set_xterm256_foreground(246, 193,  65),
    set_xterm256_foreground(247, 240,  86),
    set_xterm256_foreground(144, 201, 135),
    set_xterm256_foreground( 78, 178, 101),
};

static void print_usage(int, char ** argv) {
    LOG("\nexample usage:\n");
    LOG("\n    %s -m model.gguf -p \"Hello!\"\n", argv[0]);
    LOG("\n");
}

struct wav_header {
    char riff[4] = {'R', 'I', 'F', 'F'};
    uint32_t chunk_size;
    char wave[4] = {'W', 'A', 'V', 'E'};
    char fmt[4] = {'f', 'm', 't', ' '};
    uint32_t fmt_chunk_size = 16;
    uint16_t audio_format = 1; // PCM
    uint16_t num_channels = 1; // Mono
    uint32_t sample_rate;
    uint32_t byte_rate;
    uint16_t block_align;
    uint16_t bits_per_sample = 16;
    char data[4] = {'d', 'a', 't', 'a'};
    uint32_t data_size;
};

static void save_wav16(const std::string & fname, const std::vector<float> & data, int sample_rate) {
    std::ofstream file(fname, std::ios::binary);
    if (!file) {
        LOG_ERR("%s: Failed to open file '%s' for writing", __func__, fname.c_str());
        return;
    }

    wav_header header;
    header.sample_rate = sample_rate;
    header.byte_rate = header.sample_rate * header.num_channels * (header.bits_per_sample / 8);
    header.block_align = header.num_channels * (header.bits_per_sample / 8);
    header.data_size = data.size() * (header.bits_per_sample / 8);
    header.chunk_size = 36 + header.data_size;

    file.write(reinterpret_cast<const char*>(&header), sizeof(header));

    for (const auto & sample : data) {
        int16_t pcm_sample = static_cast<int16_t>(std::clamp(sample * 32767.0, -32768.0, 32767.0));
        file.write(reinterpret_cast<const char*>(&pcm_sample), sizeof(pcm_sample));
    }

    file.close();
}

static void fill_hann_window(int length, bool periodic, float * output) {
    int offset = -1;
    if (periodic) {
        offset = 0;
    }
    for (int i = 0; i < length; i++) {
        output[i] = 0.5 * (1.0 - cosf((2.0 * M_PI * i) / (length + offset)));
    }
}

// very poor-man fft
static void twiddle(float * real, float * imag, int k, int N) {
    float angle = 2 * M_PI * k / N;
    *real = cos(angle);
    *imag = sin(angle);
}

static void irfft(int n, const float * inp_cplx, float * out_real) {
    int N = n / 2 + 1;

    std::vector<float> real_input(N);
    std::vector<float> imag_input(N);
    for (int i = 0; i < N; ++i) {
        real_input[i] = inp_cplx[2 * i];
        imag_input[i] = inp_cplx[2 * i + 1];
    }

    std::vector<float> real_output(n);
    std::vector<float> imag_output(n);

    for (int k = 0; k < n; ++k) {
        real_output[k] = 0.0f;
        imag_output[k] = 0.0f;
        for (int m = 0; m < N; ++m) {
            float twiddle_real;
            float twiddle_imag;

            twiddle(&twiddle_real, &twiddle_imag, k * m, n);

            real_output[k] += real_input[m] * twiddle_real - imag_input[m] * twiddle_imag;
            imag_output[k] += real_input[m] * twiddle_imag + imag_input[m] * twiddle_real;
        }
    }

    for (int i = 0; i < n; ++i) {
        out_real[i] = real_output[i] / N;
    }
}

//
//  y = torch.nn.functional.fold(
//       data, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length),
//  )[:, 0, 0, pad:-pad]
//
// data.shape =  torch.Size([1, 1280, 261])
// output_size =  84480
// win_length =  1280
// hop_length =  320
// pad =  480
//
static void fold(const std::vector<float> & data, int64_t n_out, int64_t n_win, int64_t n_hop, int64_t n_pad, std::vector<float> & output) {
    int64_t output_height = n_out;
    int64_t kernel_w = n_win;
    int64_t stride_w = n_hop;
    int64_t width    = n_out;

    output.resize(width, 0.0f);

    int64_t col_idx = 0;
    for (int64_t w_col = 0; w_col < width; ++w_col) {
        int64_t start = w_col * stride_w - n_pad;
        int64_t end   = start + kernel_w;

        for (int64_t w_im = start; w_im < end; ++w_im) {
            if (w_im >= 0 && w_im < output_height && col_idx < (int64_t) data.size()) {
                output[w_im] += data[col_idx];
            }
            col_idx++;
        }
    }

    output.resize(n_out - 2 * n_pad);
}

// TODO: not optimized at all
static std::vector<float> embd_to_audio(
        const float * embd,
        const int n_codes,
        const int n_embd,
        const int n_thread) {
    const int n_fft = 1280;
    const int n_hop = 320;
    const int n_win = 1280;
    const int n_pad = (n_win - n_hop)/2;
    const int n_out = (n_codes - 1)*n_hop + n_win;

    std::vector<float> hann(n_fft);

    fill_hann_window(hann.size(), true, hann.data());

    int n_spec = n_embd*n_codes;

    std::vector<float> E (n_spec);
    std::vector<float> S (n_spec);
    std::vector<float> ST(n_spec);

    for (int l = 0; l < n_codes; ++l) {
        for (int k = 0; k < n_embd; ++k) {
            E[k*n_codes + l] = embd[l*n_embd + k];
        }
    }

    for (int k = 0; k < n_embd/2; ++k) {
        for (int l = 0; l < n_codes; ++l) {
            float mag = E[(k           )*n_codes + l];
            float phi = E[(k + n_embd/2)*n_codes + l];

            mag = exp(mag);

            if (mag > 1e2) {
                mag = 1e2;
            }
            S[2*(k*n_codes + l) + 0] = mag*cosf(phi);
            S[2*(k*n_codes + l) + 1] = mag*sinf(phi);
        }
    }

    for (int l = 0; l < n_codes; ++l) {
        for (int k = 0; k < n_embd/2; ++k) {
            ST[l*n_embd + 2*k + 0] = S[2*(k*n_codes + l) + 0];
            ST[l*n_embd + 2*k + 1] = S[2*(k*n_codes + l) + 1];
        }
    }

    std::vector<float> res  (n_codes*n_fft);
    std::vector<float> hann2(n_codes*n_fft);

    std::vector<std::thread> workers(n_thread);
    for (int i = 0; i < n_thread; ++i) {
        workers[i] = std::thread([&, i]() {
            for (int l = i; l < n_codes; l += n_thread) {
                irfft(n_fft, ST.data() + l*n_embd, res.data() + l*n_fft);
                for (int j = 0; j < n_fft; ++j) {
                    res  [l*n_fft + j] *= hann[j];
                    hann2[l*n_fft + j]  = hann[j] * hann[j];
                }
            }
        });
    }
    for (int i = 0; i < n_thread; ++i) {
        workers[i].join();
    }

    std::vector<float> audio;
    std::vector<float> env;

    fold(res,   n_out, n_win, n_hop, n_pad, audio);
    fold(hann2, n_out, n_win, n_hop, n_pad, env); // TODO: can be done once

    for (size_t i = 0; i < audio.size(); ++i) {
        audio[i] /= env[i];
    }

    return audio;
}

static const std::map<int, std::string> ones = {
    {0, "zero"}, {1, "one"}, {2, "two"}, {3, "three"}, {4, "four"},
    {5, "five"}, {6, "six"}, {7, "seven"}, {8, "eight"}, {9, "nine"},
    {10, "ten"}, {11, "eleven"}, {12, "twelve"}, {13, "thirteen"}, {14, "fourteen"},
    {15, "fifteen"}, {16, "sixteen"}, {17, "seventeen"}, {18, "eighteen"}, {19, "nineteen"}
};

static const std::map<int, std::string> tens = {
    {2, "twenty"}, {3, "thirty"}, {4, "forty"}, {5, "fifty"},
    {6, "sixty"}, {7, "seventy"}, {8, "eighty"}, {9, "ninety"}
};

// Convert a number less than 1000 to words
static std::string convert_less_than_thousand(int num) {
    std::string result;

    if (num >= 100) {
        result += ones.at(num / 100) + " hundred ";
        num %= 100;
    }

    if (num >= 20) {
        result += tens.at(num / 10);
        if (num % 10 > 0) {
            result += "-" + ones.at(num % 10);
        }
    } else if (num > 0) {
        result += ones.at(num);
    }

    return result;
}

static std::string number_to_words(const std::string & number_str) {
    try {
        size_t decimal_pos = number_str.find('.');
        std::string integer_part = number_str.substr(0, decimal_pos);

        int int_number = std::stoi(integer_part);
        std::string result;

        if (int_number == 0) {
            result = "zero";
        } else {
            if (int_number >= 1000000000) {
                int billions = int_number / 1000000000;
                result += convert_less_than_thousand(billions) + " billion ";
                int_number %= 1000000000;
            }

            if (int_number >= 1000000) {
                int millions = int_number / 1000000;
                result += convert_less_than_thousand(millions) + " million ";
                int_number %= 1000000;
            }

            if (int_number >= 1000) {
                int thousands = int_number / 1000;
                result += convert_less_than_thousand(thousands) + " thousand ";
                int_number %= 1000;
            }

            if (int_number > 0) {
                result += convert_less_than_thousand(int_number);
            }
        }

        // Handle decimal part
        if (decimal_pos != std::string::npos) {
            result += " point";
            std::string decimal_part = number_str.substr(decimal_pos + 1);
            for (char digit : decimal_part) {
                result += " " + ones.at(digit - '0');
            }
        }

        return result;
    } catch (const std::exception& e) {
        // Skip if fails
        return " ";
    }
}

static std::string replace_numbers_with_words(const std::string & input_text) {
    std::regex number_pattern(R"(\d+(\.\d+)?)");
    std::string result;
    auto it = std::sregex_iterator(input_text.begin(), input_text.end(), number_pattern);
    auto end = std::sregex_iterator();

    size_t last_pos = 0;
    for (std::sregex_iterator i = it; i != end; ++i) {
        const std::smatch& match = *i;
        result.append(input_text, last_pos, match.position() - last_pos);
        result.append(number_to_words(match.str()));
        last_pos = match.position() + match.length();
    }
    result.append(input_text, last_pos);

    return result;
}

// Based on: https://github.com/edwko/OuteTTS/blob/a613e79c489d8256dd657ea9168d78de75895d82/outetts/version/v1/prompt_processor.py#L39
static std::string process_text(const std::string & text) {

    // For now I skipped text romanization as I am unsure how to handle
    // uroman and MeCab implementations in C++
    // maybe something like https://github.com/anyascii/anyascii/ could work.
    // currently only English would be supported in this function

    std::string processed_text = replace_numbers_with_words(text);

    std::transform(processed_text.begin(), processed_text.end(),
                  processed_text.begin(), ::tolower);

    std::regex special_chars(R"([-_/,\.\\])");
    processed_text = std::regex_replace(processed_text, special_chars, " ");

    std::regex non_alpha(R"([^a-z\s])");
    processed_text = std::regex_replace(processed_text, non_alpha, "");

    std::regex multiple_spaces(R"(\s+)");
    processed_text = std::regex_replace(processed_text, multiple_spaces, " ");

    processed_text = std::regex_replace(processed_text, std::regex(R"(^\s+|\s+$)"), "");

    /*
        Replace spaces with the separator token same as in line 365

        for (auto & c : prompt_user) {
        if (c == ' ') {
            prompt_clean += "<|text_sep|>";
    */
    processed_text = std::regex_replace(processed_text, std::regex(R"(\s)"), "<|text_sep|>");

    return processed_text;
}

static void prompt_add(llama_tokens & prompt, llama_token token) {
    prompt.push_back(token);
}

static void prompt_add(llama_tokens & prompt, const llama_tokens & tokens) {
    prompt.insert(prompt.end(), tokens.begin(), tokens.end());
}

static void prompt_add(llama_tokens & prompt, const llama_vocab * vocab, const std::string & txt, bool add_special, bool parse_special) {
    auto tmp = common_tokenize(vocab, txt, add_special, parse_special);
    prompt_add(prompt, tmp);
}

static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
    prompt.clear();

    prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
}

static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str) {
    const std::string& delimiter = "<|text_sep|>";

    std::vector<llama_token> result;
    size_t start = 0;
    size_t end = str.find(delimiter);

    //first token is always a newline, as it was not previously added
    result.push_back(common_tokenize(vocab, "\n", false, true)[0]);

    while (end != std::string::npos) {
        std::string current_word = str.substr(start, end - start);
        auto tmp = common_tokenize(vocab, current_word, false, true);
        result.push_back(tmp[0]);
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    // Add the last part
    std::string current_word = str.substr(start);
    auto tmp = common_tokenize(vocab, current_word, false, true);
    if (tmp.size() > 0) {
        result.push_back(tmp[0]);
    }
    return result;
}

int main(int argc, char ** argv) {
    common_params params;

    params.prompt = "";

    params.n_predict = 4096;
    params.n_batch   = 8192;
    params.n_ctx     = 8192;

    params.sampling.top_k = 4;
    params.sampling.samplers = { COMMON_SAMPLER_TYPE_TOP_K, };

    if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_TTS, print_usage)) {
        return 1;
    }

    const int n_parallel = params.n_parallel;
    const int n_predict  = params.n_predict;

    common_init();

    // init LLM

    llama_backend_init();
    llama_numa_init(params.numa);

    llama_model * model_ttc = NULL; // text-to-codes
    llama_model * model_cts = NULL; // codes-to-speech

    llama_context * ctx_ttc = NULL;
    llama_context * ctx_cts = NULL;

    common_init_result llama_init_ttc = common_init_from_params(params);

    model_ttc = llama_init_ttc.model.get();
    ctx_ttc   = llama_init_ttc.context.get();

    const llama_vocab * vocab = llama_model_get_vocab(model_ttc);

    // TODO: refactor in a common struct
    params.model     = params.vocoder.model;
    params.model_url = params.vocoder.model_url;
    params.hf_repo   = params.vocoder.hf_repo;
    params.hf_file   = params.vocoder.hf_file;

    params.embedding = true;

    common_init_result llama_init_cts = common_init_from_params(params);

    model_cts = llama_init_cts.model.get();
    ctx_cts   = llama_init_cts.context.get();

    std::vector<common_sampler *> smpl(n_parallel);
    for (int i = 0; i < n_parallel; ++i) {
        params.sampling.no_perf = (i != 0);
        params.sampling.seed = params.sampling.seed + 1;

        smpl[i] = common_sampler_init(model_ttc, params.sampling);
    }

    LOG_INF("sampler seed: %u\n",     common_sampler_get_seed(smpl[0]));
    LOG_INF("sampler params: \n%s\n", params.sampling.print().c_str());
    LOG_INF("sampler chain: %s\n",    common_sampler_print(smpl[0]).c_str());

    LOG_INF("%s: loading done\n", __func__);

    const auto t_main_start = ggml_time_us();

    std::vector<llama_token> codes;
    std::vector<llama_token> guide_tokens;

    // process prompt and generate voice codes
    {
        LOG_INF("%s: constructing prompt ..\n", __func__);

        std::vector<llama_token> prompt_inp;

        prompt_init(prompt_inp, vocab);

        prompt_add(prompt_inp, vocab, "<|text_start|>the<|text_sep|>overall<|text_sep|>package<|text_sep|>from<|text_sep|>just<|text_sep|>two<|text_sep|>people<|text_sep|>is<|text_sep|>pretty<|text_sep|>remarkable<|text_sep|>sure<|text_sep|>i<|text_sep|>have<|text_sep|>some<|text_sep|>critiques<|text_sep|>about<|text_sep|>some<|text_sep|>of<|text_sep|>the<|text_sep|>gameplay<|text_sep|>aspects<|text_sep|>but<|text_sep|>its<|text_sep|>still<|text_sep|>really<|text_sep|>enjoyable<|text_sep|>and<|text_sep|>it<|text_sep|>looks<|text_sep|>lovely<|text_sep|>", false, true);

        // convert the input text into the necessary format expected by OuteTTS
        {
            std::string prompt_clean = process_text(params.prompt);
            if (params.vocoder.use_guide_tokens) {
                guide_tokens = prepare_guide_tokens(vocab, prompt_clean);
            }

            LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());

            prompt_add(prompt_inp, vocab, prompt_clean, false, true);
        }

        prompt_add(prompt_inp, vocab, "<|text_end|>\n", false, true);

        // disabled to save time on tokenizing each time
        // TODO: load voices from the json files
#if 0
        const std::string voice_data = R"(<|audio_start|>
the<|t_0.08|><|code_start|><|257|><|740|><|636|><|913|><|788|><|1703|><|code_end|>
overall<|t_0.36|><|code_start|><|127|><|201|><|191|><|774|><|700|><|532|><|1056|><|557|><|798|><|298|><|1741|><|747|><|1662|><|1617|><|1702|><|1527|><|368|><|1588|><|1049|><|1008|><|1625|><|747|><|1576|><|728|><|1019|><|1696|><|1765|><|code_end|>
package<|t_0.56|><|code_start|><|935|><|584|><|1319|><|627|><|1016|><|1491|><|1344|><|1117|><|1526|><|1040|><|239|><|1435|><|951|><|498|><|723|><|1180|><|535|><|789|><|1649|><|1637|><|78|><|465|><|1668|><|901|><|595|><|1675|><|117|><|1009|><|1667|><|320|><|840|><|79|><|507|><|1762|><|1508|><|1228|><|1768|><|802|><|1450|><|1457|><|232|><|639|><|code_end|>
from<|t_0.19|><|code_start|><|604|><|782|><|1682|><|872|><|1532|><|1600|><|1036|><|1761|><|647|><|1554|><|1371|><|653|><|1595|><|950|><|code_end|>
just<|t_0.25|><|code_start|><|1782|><|1670|><|317|><|786|><|1748|><|631|><|599|><|1155|><|1364|><|1524|><|36|><|1591|><|889|><|1535|><|541|><|440|><|1532|><|50|><|870|><|code_end|>
two<|t_0.24|><|code_start|><|1681|><|1510|><|673|><|799|><|805|><|1342|><|330|><|519|><|62|><|640|><|1138|><|565|><|1552|><|1497|><|1552|><|572|><|1715|><|1732|><|code_end|>
people<|t_0.39|><|code_start|><|593|><|274|><|136|><|740|><|691|><|633|><|1484|><|1061|><|1138|><|1485|><|344|><|428|><|397|><|1562|><|645|><|917|><|1035|><|1449|><|1669|><|487|><|442|><|1484|><|1329|><|1832|><|1704|><|600|><|761|><|653|><|269|><|code_end|>
is<|t_0.16|><|code_start|><|566|><|583|><|1755|><|646|><|1337|><|709|><|802|><|1008|><|485|><|1583|><|652|><|10|><|code_end|>
pretty<|t_0.32|><|code_start|><|1818|><|1747|><|692|><|733|><|1010|><|534|><|406|><|1697|><|1053|><|1521|><|1355|><|1274|><|816|><|1398|><|211|><|1218|><|817|><|1472|><|1703|><|686|><|13|><|822|><|445|><|1068|><|code_end|>
remarkable<|t_0.68|><|code_start|><|230|><|1048|><|1705|><|355|><|706|><|1149|><|1535|><|1787|><|1356|><|1396|><|835|><|1583|><|486|><|1249|><|286|><|937|><|1076|><|1150|><|614|><|42|><|1058|><|705|><|681|><|798|><|934|><|490|><|514|><|1399|><|572|><|1446|><|1703|><|1346|><|1040|><|1426|><|1304|><|664|><|171|><|1530|><|625|><|64|><|1708|><|1830|><|1030|><|443|><|1509|><|1063|><|1605|><|1785|><|721|><|1440|><|923|><|code_end|>
sure<|t_0.36|><|code_start|><|792|><|1780|><|923|><|1640|><|265|><|261|><|1525|><|567|><|1491|><|1250|><|1730|><|362|><|919|><|1766|><|543|><|1|><|333|><|113|><|970|><|252|><|1606|><|133|><|302|><|1810|><|1046|><|1190|><|1675|><|code_end|>
i<|t_0.08|><|code_start|><|123|><|439|><|1074|><|705|><|1799|><|637|><|code_end|>
have<|t_0.16|><|code_start|><|1509|><|599|><|518|><|1170|><|552|><|1029|><|1267|><|864|><|419|><|143|><|1061|><|0|><|code_end|>
some<|t_0.16|><|code_start|><|619|><|400|><|1270|><|62|><|1370|><|1832|><|917|><|1661|><|167|><|269|><|1366|><|1508|><|code_end|>
critiques<|t_0.60|><|code_start|><|559|><|584|><|1163|><|1129|><|1313|><|1728|><|721|><|1146|><|1093|><|577|><|928|><|27|><|630|><|1080|><|1346|><|1337|><|320|><|1382|><|1175|><|1682|><|1556|><|990|><|1683|><|860|><|1721|><|110|><|786|><|376|><|1085|><|756|><|1523|><|234|><|1334|><|1506|><|1578|><|659|><|612|><|1108|><|1466|><|1647|><|308|><|1470|><|746|><|556|><|1061|><|code_end|>
about<|t_0.29|><|code_start|><|26|><|1649|><|545|><|1367|><|1263|><|1728|><|450|><|859|><|1434|><|497|><|1220|><|1285|><|179|><|755|><|1154|><|779|><|179|><|1229|><|1213|><|922|><|1774|><|1408|><|code_end|>
some<|t_0.23|><|code_start|><|986|><|28|><|1649|><|778|><|858|><|1519|><|1|><|18|><|26|><|1042|><|1174|><|1309|><|1499|><|1712|><|1692|><|1516|><|1574|><|code_end|>
of<|t_0.07|><|code_start|><|197|><|716|><|1039|><|1662|><|64|><|code_end|>
the<|t_0.08|><|code_start|><|1811|><|1568|><|569|><|886|><|1025|><|1374|><|code_end|>
gameplay<|t_0.48|><|code_start|><|1269|><|1092|><|933|><|1362|><|1762|><|1700|><|1675|><|215|><|781|><|1086|><|461|><|838|><|1022|><|759|><|649|><|1416|><|1004|><|551|><|909|><|787|><|343|><|830|><|1391|><|1040|><|1622|><|1779|><|1360|><|1231|><|1187|><|1317|><|76|><|997|><|989|><|978|><|737|><|189|><|code_end|>
aspects<|t_0.56|><|code_start|><|1423|><|797|><|1316|><|1222|><|147|><|719|><|1347|><|386|><|1390|><|1558|><|154|><|440|><|634|><|592|><|1097|><|1718|><|712|><|763|><|1118|><|1721|><|1311|><|868|><|580|><|362|><|1435|><|868|><|247|><|221|><|886|><|1145|><|1274|><|1284|><|457|><|1043|><|1459|><|1818|><|62|><|599|><|1035|><|62|><|1649|><|778|><|code_end|>
but<|t_0.20|><|code_start|><|780|><|1825|><|1681|><|1007|><|861|><|710|><|702|><|939|><|1669|><|1491|><|613|><|1739|><|823|><|1469|><|648|><|code_end|>
its<|t_0.09|><|code_start|><|92|><|688|><|1623|><|962|><|1670|><|527|><|599|><|code_end|>
still<|t_0.27|><|code_start|><|636|><|10|><|1217|><|344|><|713|><|957|><|823|><|154|><|1649|><|1286|><|508|><|214|><|1760|><|1250|><|456|><|1352|><|1368|><|921|><|615|><|5|><|code_end|>
really<|t_0.36|><|code_start|><|55|><|420|><|1008|><|1659|><|27|><|644|><|1266|><|617|><|761|><|1712|><|109|><|1465|><|1587|><|503|><|1541|><|619|><|197|><|1019|><|817|><|269|><|377|><|362|><|1381|><|507|><|1488|><|4|><|1695|><|code_end|>
enjoyable<|t_0.49|><|code_start|><|678|><|501|><|864|><|319|><|288|><|1472|><|1341|><|686|><|562|><|1463|><|619|><|1563|><|471|><|911|><|730|><|1811|><|1006|><|520|><|861|><|1274|><|125|><|1431|><|638|><|621|><|153|><|876|><|1770|><|437|><|987|><|1653|><|1109|><|898|><|1285|><|80|><|593|><|1709|><|843|><|code_end|>
and<|t_0.15|><|code_start|><|1285|><|987|><|303|><|1037|><|730|><|1164|><|502|><|120|><|1737|><|1655|><|1318|><|code_end|>
it<|t_0.09|><|code_start|><|848|><|1366|><|395|><|1601|><|1513|><|593|><|1302|><|code_end|>
looks<|t_0.27|><|code_start|><|1281|><|1266|><|1755|><|572|><|248|><|1751|><|1257|><|695|><|1380|><|457|><|659|><|585|><|1315|><|1105|><|1776|><|736|><|24|><|736|><|654|><|1027|><|code_end|>
lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|1481|><|1721|><|1123|><|438|><|1246|><|1251|><|795|><|659|><|1381|><|1658|><|217|><|1772|><|562|><|952|><|107|><|1129|><|1112|><|467|><|550|><|1079|><|840|><|1615|><|1469|><|1380|><|168|><|917|><|836|><|1827|><|437|><|583|><|67|><|595|><|1087|><|1646|><|1493|><|1677|><|code_end|>)";

        auto tmp = common_tokenize(vocab, voice_data, false, true);
        printf("\n\n");
        for (int i = 0; i < tmp.size(); ++i) {
            printf("%d, ", tmp[i]);
        }
        printf("\n\n");
#else
        prompt_add(prompt_inp, llama_tokens {
            151667, 198, 1782, 155780, 151669, 151929, 152412, 152308, 152585,
            152460, 153375, 151670, 198, 74455, 155808, 151669, 151799,
            151873, 151863, 152446, 152372, 152204, 152728, 152229, 152470,
            151970, 153413, 152419, 153334, 153289, 153374, 153199, 152040,
            153260, 152721, 152680, 153297, 152419, 153248, 152400, 152691,
            153368, 153437, 151670, 198, 1722, 155828, 151669, 152607,
            152256, 152991, 152299, 152688, 153163, 153016, 152789, 153198,
            152712, 151911, 153107, 152623, 152170, 152395, 152852, 152207,
            152461, 153321, 153309, 151750, 152137, 153340, 152573, 152267,
            153347, 151789, 152681, 153339, 151992, 152512, 151751, 152179,
            153434, 153180, 152900, 153440, 152474, 153122, 153129, 151904,
            152311, 151670, 198, 1499, 155791, 151669, 152276, 152454,
            153354, 152544, 153204, 153272, 152708, 153433, 152319, 153226,
            153043, 152325, 153267, 152622, 151670, 198, 4250, 155797,
            151669, 153454, 153342, 151989, 152458, 153420, 152303, 152271,
            152827, 153036, 153196, 151708, 153263, 152561, 153207, 152213,
            152112, 153204, 151722, 152542, 151670, 198, 19789, 155796,
            151669, 153353, 153182, 152345, 152471, 152477, 153014, 152002,
            152191, 151734, 152312, 152810, 152237, 153224, 153169, 153224,
            152244, 153387, 153404, 151670, 198, 16069, 155811, 151669,
            152265, 151946, 151808, 152412, 152363, 152305, 153156, 152733,
            152810, 153157, 152016, 152100, 152069, 153234, 152317, 152589,
            152707, 153121, 153341, 152159, 152114, 153156, 153001, 153504,
            153376, 152272, 152433, 152325, 151941, 151670, 198, 285,
            155788, 151669, 152238, 152255, 153427, 152318, 153009, 152381,
            152474, 152680, 152157, 153255, 152324, 151682, 151670, 198,
            32955, 155804, 151669, 153490, 153419, 152364, 152405, 152682,
            152206, 152078, 153369, 152725, 153193, 153027, 152946, 152488,
            153070, 151883, 152890, 152489, 153144, 153375, 152358, 151685,
            152494, 152117, 152740, 151670, 198, 37448, 480, 155840, 151669,
            151902, 152720, 153377, 152027, 152378, 152821, 153207, 153459,
            153028, 153068, 152507, 153255, 152158, 152921, 151958, 152609,
            152748, 152822, 152286, 151714, 152730, 152377, 152353, 152470,
            152606, 152162, 152186, 153071, 152244, 153118, 153375, 153018,
            152712, 153098, 152976, 152336, 151843, 153202, 152297, 151736,
            153380, 153502, 152702, 152115, 153181, 152735, 153277, 153457,
            152393, 153112, 152595, 151670, 198, 19098, 155808, 151669,
            152464, 153452, 152595, 153312, 151937, 151933, 153197, 152239,
            153163, 152922, 153402, 152034, 152591, 153438, 152215, 151673,
            152005, 151785, 152642, 151924, 153278, 151805, 151974, 153482,
            152718, 152862, 153347, 151670, 198, 72, 155780, 151669, 151795,
            152111, 152746, 152377, 153471, 152309, 151670, 198, 19016,
            155788, 151669, 153181, 152271, 152190, 152842, 152224, 152701,
            152939, 152536, 152091, 151815, 152733, 151672, 151670, 198,
            14689, 155788, 151669, 152291, 152072, 152942, 151734, 153042,
            153504, 152589, 153333, 151839, 151941, 153038, 153180, 151670,
            198, 36996, 8303, 155832, 151669, 152231, 152256, 152835,
            152801, 152985, 153400, 152393, 152818, 152765, 152249, 152600,
            151699, 152302, 152752, 153018, 153009, 151992, 153054, 152847,
            153354, 153228, 152662, 153355, 152532, 153393, 151782, 152458,
            152048, 152757, 152428, 153195, 151906, 153006, 153178, 153250,
            152331, 152284, 152780, 153138, 153319, 151980, 153142, 152418,
            152228, 152733, 151670, 198, 9096, 155801, 151669, 151698,
            153321, 152217, 153039, 152935, 153400, 152122, 152531, 153106,
            152169, 152892, 152957, 151851, 152427, 152826, 152451, 151851,
            152901, 152885, 152594, 153446, 153080, 151670, 198, 14689,
            155795, 151669, 152658, 151700, 153321, 152450, 152530, 153191,
            151673, 151690, 151698, 152714, 152846, 152981, 153171, 153384,
            153364, 153188, 153246, 151670, 198, 1055, 155779, 151669,
            151869, 152388, 152711, 153334, 151736, 151670, 198, 1782,
            155780, 151669, 153483, 153240, 152241, 152558, 152697, 153046,
            151670, 198, 5804, 1363, 155820, 151669, 152941, 152764, 152605,
            153034, 153434, 153372, 153347, 151887, 152453, 152758, 152133,
            152510, 152694, 152431, 152321, 153088, 152676, 152223, 152581,
            152459, 152015, 152502, 153063, 152712, 153294, 153451, 153032,
            152903, 152859, 152989, 151748, 152669, 152661, 152650, 152409,
            151861, 151670, 198, 300, 7973, 155828, 151669, 153095, 152469,
            152988, 152894, 151819, 152391, 153019, 152058, 153062, 153230,
            151826, 152112, 152306, 152264, 152769, 153390, 152384, 152435,
            152790, 153393, 152983, 152540, 152252, 152034, 153107, 152540,
            151919, 151893, 152558, 152817, 152946, 152956, 152129, 152715,
            153131, 153490, 151734, 152271, 152707, 151734, 153321, 152450,
            151670, 198, 8088, 155792, 151669, 152452, 153497, 153353,
            152679, 152533, 152382, 152374, 152611, 153341, 153163, 152285,
            153411, 152495, 153141, 152320, 151670, 198, 1199, 155781,
            151669, 151764, 152360, 153295, 152634, 153342, 152199, 152271,
            151670, 198, 43366, 155799, 151669, 152308, 151682, 152889,
            152016, 152385, 152629, 152495, 151826, 153321, 152958, 152180,
            151886, 153432, 152922, 152128, 153024, 153040, 152593, 152287,
            151677, 151670, 198, 53660, 155808, 151669, 151727, 152092,
            152680, 153331, 151699, 152316, 152938, 152289, 152433, 153384,
            151781, 153137, 153259, 152175, 153213, 152291, 151869, 152691,
            152489, 151941, 152049, 152034, 153053, 152179, 153160, 151676,
            153367, 151670, 198, 268, 4123, 480, 155821, 151669, 152350,
            152173, 152536, 151991, 151960, 153144, 153013, 152358, 152234,
            153135, 152291, 153235, 152143, 152583, 152402, 153483, 152678,
            152192, 152533, 152946, 151797, 153103, 152310, 152293, 151825,
            152548, 153442, 152109, 152659, 153325, 152781, 152570, 152957,
            151752, 152265, 153381, 152515, 151670, 198, 437, 155787,
            151669, 152957, 152659, 151975, 152709, 152402, 152836, 152174,
            151792, 153409, 153327, 152990, 151670, 198, 275, 155781,
            151669, 152520, 153038, 152067, 153273, 153185, 152265, 152974,
            151670, 198, 94273, 155799, 151669, 152953, 152938, 153427,
            152244, 151920, 153423, 152929, 152367, 153052, 152129, 152331,
            152257, 152987, 152777, 153448, 152408, 151696, 152408, 152326,
            152699, 151670, 198, 385, 16239, 155828, 151669, 152306, 152268,
            153438, 153228, 152978, 152957, 153153, 153393, 152795, 152110,
            152918, 152923, 152467, 152331, 153053, 153330, 151889, 153444,
            152234, 152624, 151779, 152801, 152784, 152139, 152222, 152751,
            152512, 153287, 153141, 153052, 151840, 152589, 152508, 153499,
            152109, 152255, 151739, 152267, 152759, 153318, 153165, 153349,
            151670,});
#endif

        // print the prompt token-by-token

        LOG("\n");

        for (auto id : prompt_inp) {
            LOG("%s", common_token_to_piece(ctx_ttc, id).c_str());
        }

        LOG_INF("%s: prompt size: %d\n", __func__, (int) prompt_inp.size());

        LOG("\n");

        // create a llama_batch
        // we use this object to submit token data for decoding
        llama_batch batch = llama_batch_init(std::max(prompt_inp.size(), (size_t) n_parallel), 0, n_parallel);

        std::vector<llama_seq_id> seq_ids(n_parallel, 0);
        for (int32_t i = 0; i < n_parallel; ++i) {
            seq_ids[i] = i;
        }

        // evaluate the initial prompt
        for (size_t i = 0; i < prompt_inp.size(); ++i) {
            common_batch_add(batch, prompt_inp[i], i, seq_ids, false);
        }
        GGML_ASSERT(batch.n_tokens == (int) prompt_inp.size());

        // llama_decode will output logits only for the last token of the prompt
        batch.logits[batch.n_tokens - 1] = true;

        if (llama_decode(ctx_ttc, batch) != 0) {
            LOG_ERR("%s: llama_decode() failed\n", __func__);
            return 1;
        }

        if (n_parallel > 1) {
            LOG_INF("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
        }

        llama_synchronize(ctx_ttc);

        LOG_INF("%s: time for prompt: %.3f ms\n\n", __func__, (ggml_time_us() - t_main_start) / 1000.0f);

        const auto t_dec_start = ggml_time_us();

        // main loop

        // remember the batch index of the last token for each parallel sequence
        // we need this to determine which logits to sample from
        std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);

        int n_past   = batch.n_tokens;
        int n_decode = 0;

        bool next_token_uses_guide_token = true;

        while (n_decode <= n_predict) {
            // prepare the next batch
            common_batch_clear(batch);

            // sample the next token for each parallel sequence / stream
            for (int32_t i = 0; i < n_parallel; ++i) {
                if (i_batch[i] < 0) {
                    // the stream has already finished
                    continue;
                }

                llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]);

                //guide tokens help prevent hallucinations by forcing the TTS to use the correct word
                if (!guide_tokens.empty() && next_token_uses_guide_token && !llama_vocab_is_control(vocab, new_token_id) && !llama_vocab_is_eog(vocab, new_token_id)) {
                    llama_token guide_token = guide_tokens[0];
                    guide_tokens.erase(guide_tokens.begin());
                    new_token_id = guide_token; //ensure correct word fragment is used
                }

                //this is the token id that always precedes a new word
                next_token_uses_guide_token = (new_token_id == 198);

                common_sampler_accept(smpl[i], new_token_id, true);

                codes.push_back(new_token_id);

                const auto * cands = common_sampler_get_candidates(smpl[i]);

                // is it an end of generation? -> mark the stream as finished
                if (llama_vocab_is_eog(vocab, new_token_id) || n_decode == n_predict) {
                    std::string reason;
                    if (llama_vocab_is_eog(vocab, new_token_id)) {
                        reason = "eos";
                    } else {
                        reason = "n_predict";
                    }

                    i_batch[i] = -1;

                    LOG("\n");
                    if (n_parallel > 1) {
                        LOG_CNT("\n");
                        LOG_INF("%s: stream %d finished at n_past = %d, reason = '%s'\n", __func__, i, n_past, reason.c_str());
                    }

                    continue;
                }

                {
                    const float p = cands->data[cands->selected].p;

                    const int col = std::max(0, std::min((int) k_colors.size() - 1, (int) ((3*p)*float(k_colors.size()))));

                    LOG_CNT("%s%d%s", k_colors[col].c_str(), i, "\033[0m");
                    //LOG_CNT("%d", i);
                }

                i_batch[i] = batch.n_tokens;

                // push this new token for next evaluation
                common_batch_add(batch, new_token_id, n_past, { i }, true);
            }

            // all streams are finished
            if (batch.n_tokens == 0) {
                break;
            }

            n_decode += 1;
            n_past += 1;

            // evaluate the current batch with the transformer model
            if (llama_decode(ctx_ttc, batch)) {
                LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
                return 1;
            }
        }

        llama_batch_free(batch);

        LOG("\n");
        LOG_INF("%s: time for decoder:       %.3f ms\n", __func__, (ggml_time_us() - t_dec_start) / 1000.0f);
    }

    common_perf_print(ctx_ttc, smpl[0]);

    //std::vector<llama_token> codes = {198, 88225, 155856, 151669, 152205,
    //    153064, 152537, 153421, 153209, 152524, 151689, 152993, 152438, 152695,
    //    153091, 152945, 152829, 152534, 152934, 153020, 151997, 152263, 153010,
    //    153146, 152399, 153208, 152496, 151793, 152848, 152263, 152571, 153286,
    //    152227, 153300, 152934, 152263, 153208, 152263, 152965, 152430, 152296,
    //    153146, 152920, 152376, 152556, 153363, 151775, 152044, 152972, 152690,
    //    153379, 152368, 152233, 153422, 152490, 151996, 152022, 151694, 152061,
    //    153238, 152539, 153356, 152640, 153021, 153123, 151962, 153094, 151670,
    //    198, 20339, 13189, 155824, 151669, 152070, 152007, 152910, 151683,
    //    152000, 152373, 152760, 152046, 151735, 152334, 152394, 153073, 152908,
    //    151856, 151953, 153247, 153293, 151903, 153480, 153168, 152478, 153359,
    //    153429, 151905, 151678, 152567, 152411, 152165, 152556, 153075, 153424,
    //    151993, 152999, 153078, 152151, 152088, 153389, 152484, 151874, 151670,
    //    198, 285, 155784, 151669, 152226, 152126, 152638, 153215, 151729,
    //    152959, 153479, 153059, 151838, 151670, 198, 1782, 155783, 151669,
    //    153288, 153055, 153314, 152497, 152962, 152741, 152076, 153253, 151670,
    //    198, 471, 16488, 155825, 151669, 152060, 152916, 151893, 153469, 152501,
    //    152080, 152743, 151932, 153161, 152096, 152761, 152698, 153401, 153242,
    //    153336, 152441, 152838, 153467, 152706, 153496, 153310, 152422, 153360,
    //    153115, 152763, 151998, 152373, 153450, 152554, 151968, 153323, 152055,
    //    152468, 153111, 153358, 152813, 152010, 151770, 152823, 152960, 151670,
    //    198, 22627, 155823, 151669, 152814, 152366, 153484, 152931, 153441,
    //    152164, 152877, 152915, 153463, 151692, 152911, 152747, 152776, 151831,
    //    153449, 151882, 152975, 152031, 152513, 153150, 152448, 152667, 153133,
    //    153189, 152619, 153466, 152054, 152106, 153119, 152277, 152439, 153109,
    //    152997, 152141, 153154, 153256, 153311, 151922, 151670, 198, 1055,
    //    155781, 151669, 152633, 151850, 153060, 153270, 152560, 153348, 152729,
    //    151670, 198, 25312, 155803, 151669, 152521, 153403, 152561, 153337,
    //    153383, 152199, 153493, 153326, 151830, 152254, 152248, 152349, 152153,
    //    153007, 151823, 153037, 152575, 152457, 152406, 152592, 153116, 153365,
    //    153456, 151670, 198, 88225, 155817, 151669, 153271, 151925, 152218,
    //    152418, 152253, 153140, 151903, 153151, 152626, 152338, 152647, 153464,
    //    152785, 152768, 151711, 152037, 152033, 151804, 152216, 151701, 151855,
    //    152348, 152995, 152955, 152905, 152342, 152340, 153391, 153453, 152418,
    //    153415, 151990, 153083, 152884, 151670, 198, 151668, 198, 151645};

    {
        const std::string inp_txt = common_detokenize(ctx_ttc, codes, true);

        LOG("\n");
        LOG_INF("codes: '%s'\n", inp_txt.c_str());
        LOG_INF("%s: codes size: %d\n", __func__, (int) codes.size());
    }

    // remove all non-audio tokens (i.e. < 151672 || > 155772)
    codes.erase(std::remove_if(codes.begin(), codes.end(), [](llama_token t) { return t < 151672 || t > 155772; }), codes.end());

    {
        const std::string inp_txt = common_detokenize(ctx_ttc, codes, true);
        LOG_INF("codes audio: '%s'\n", inp_txt.c_str());
        LOG_INF("%s: codes audio size: %d\n", __func__, (int) codes.size());
    }

    for (auto & token : codes) {
        token -= 151672;
    }

    const auto t_voc_start = ggml_time_us();

    const int n_codes = codes.size();

    llama_batch batch = llama_batch_init(n_codes, 0, 1);

    for (size_t i = 0; i < codes.size(); ++i) {
        common_batch_add(batch, codes[i], i, { 0 }, true); // TODO: all logits?
    }
    GGML_ASSERT(batch.n_tokens == n_codes);

    if (llama_decode(ctx_cts, batch) != 0) {
        LOG_ERR("%s: llama_decode() failed\n", __func__);
        return 1;
    }

    llama_synchronize(ctx_cts);

    LOG_INF("%s: time for vocoder:      %.3f ms\n", __func__, (ggml_time_us() - t_voc_start) / 1000.0f);

    const auto t_spec_start = ggml_time_us();

#if 1
    // spectral operations
    const int n_embd = llama_model_n_embd(model_cts);
    const float * embd = llama_get_embeddings(ctx_cts);

    auto audio = embd_to_audio(embd, n_codes, n_embd, params.cpuparams.n_threads);

#else
    // read the spectrogram from a file for debugging purposes
    std::vector<float> audio;
    {
        std::ifstream fin("out.bin", std::ios::binary);
        if (!fin) {
            LOG_ERR("%s: failed to open file '%s'\n", __func__, "out.bin");
            return 1;
        }

        std::vector<float> embd;

        int n_codes;
        int n_embd;

        fin.read(reinterpret_cast<char *>(&n_codes), sizeof(int));
        fin.read(reinterpret_cast<char *>(&n_embd), sizeof(int));

        embd.resize(n_codes * n_embd);
        fin.read(reinterpret_cast<char *>(embd.data()), n_codes * n_embd * sizeof(float));
        fin.close();

        LOG_INF("%s: n_codes: %d, n_embd: %d\n", __func__, n_codes, n_embd);

        audio = embd_to_audio(embd.data(), n_codes, n_embd, params.cpuparams.n_threads);
    }
#endif

    const std::string fname = "output.wav";

    const int n_sr = 24000; // sampling rate

    // zero out first 0.25 seconds
    for (int i = 0; i < 24000/4; ++i) {
        audio[i] = 0.0f;
    }

    LOG_INF("%s: time for spectral ops: %.3f ms\n", __func__, (ggml_time_us() - t_spec_start) / 1000.0f);
    LOG_INF("%s: total time:            %.3f ms\n", __func__, (ggml_time_us() - t_main_start) / 1000.0f);

    save_wav16(fname, audio, n_sr);

    LOG_INF("%s: audio written to file '%s'\n", __func__, fname.c_str());

    llama_backend_free();

    return 0;
}