VAE / models /conv_vae.py
souranil3d's picture
First commit for VAE space
16906c1
from .vae import VAE, Flatten, Stack
import torch.nn as nn
import pytorch_lightning as pl
import torch
import os
import random
from typing import Optional
import torchvision.transforms as transforms
from torchvision.datasets import MNIST, FashionMNIST, CelebA
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from torch.optim import Adam
from torch.optim.lr_scheduler import ReduceLROnPlateau
class PrintShape(nn.Module):
def __init__(self):
super(PrintShape, self).__init__()
def forward(self, x):
# Do your print / debug stuff here
# print(f"Shape: {x.shape}")
return x
class UnFlatten(nn.Module):
def forward(self, input, size=4096):
# print("Unflatteing")
return input.view(input.size(0), size, 1, 1)
class Flatten(nn.Module):
def forward(self, input):
# print("Flattening")
return input.view(input.size(0), -1)
class Conv_VAE(pl.LightningModule):
def __init__(self, channels: int, height: int, width: int, lr: int,
latent_size: int, hidden_size: int, alpha: int, batch_size: int,
dataset: Optional[str] = None,
save_images: Optional[bool] = None,
save_path: Optional[str] = None, **kwargs):
super().__init__()
self.latent_size = latent_size
self.hidden_size = hidden_size
if save_images:
self.save_path = f'{save_path}/{kwargs["model_type"]}_images/'
self.save_hyperparameters()
self.save_images = save_images
self.lr = lr
self.batch_size = batch_size
self.alpha = alpha
self.dataset = dataset
assert not height % 4 and not width % 4, "Choose height and width to "\
"be divisible by 4"
self.channels = channels
self.height = height
self.width = width
self.latent_size = latent_size
self.save_hyperparameters()
self.data_transform = transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop((64, 64)),
transforms.ToTensor()
])
self.encoder = nn.Sequential(
PrintShape(),
nn.Conv2d(self.channels, 32, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.LeakyReLU(),
PrintShape(),
nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(),
PrintShape(),
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(),
PrintShape(),
nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(),
PrintShape(),
Flatten(),
PrintShape(),
)
self.fc1 = nn.Linear(self.hidden_size, self.latent_size)
self.fc2 = nn.Linear(self.latent_size, self.hidden_size)
self.decoder = nn.Sequential(
PrintShape(),
# nn.Linear(self.hidden_size, self.hidden_size),
# PrintShape(),
# nn.BatchNorm1d(self.hidden_size),
UnFlatten(),
PrintShape(),
nn.ConvTranspose2d(self.hidden_size, 256, kernel_size=6, stride=2, padding=1),
PrintShape(),
nn.LeakyReLU(),
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
PrintShape(),
nn.LeakyReLU(),
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
PrintShape(),
nn.LeakyReLU(),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(32),
PrintShape(),
nn.LeakyReLU(),
nn.ConvTranspose2d(32, self.channels, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(self.channels),
PrintShape(),
nn.Sigmoid(),
)
def encode(self, x):
hidden = self.encoder(x)
mu, log_var = self.fc1(hidden), self.fc1(hidden)
# print("Encoded")
return mu, log_var
def decode(self, z):
# print("Decoding")
# f = nn.Linear(self.latent_size, self.hidden_size)
z = self.fc2(z)
# print(f"L: {z.shape}")
x = self.decoder(z)
return x
def reparametrize(self, mu, log_var):
# Reparametrization Trick to allow gradients to backpropagate from the
# stochastic part of the model
sigma = torch.exp(0.5*log_var)
z = torch.randn_like(sigma)
return mu + sigma*z
def training_step(self, batch, batch_idx):
x, _ = batch
mu, log_var, x_out = self.forward(x)
kl_loss = (-0.5*(1+log_var - mu**2 -
torch.exp(log_var)).sum(dim=1)).mean(dim=0)
recon_loss_criterion = nn.MSELoss()
recon_loss = recon_loss_criterion(x, x_out)
# print(kl_loss.item(),recon_loss.item())
loss = recon_loss*self.alpha + kl_loss
self.log('train_loss', loss, on_step=False,
on_epoch=True, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
x, _ = batch
mu, log_var, x_out = self.forward(x)
kl_loss = (-0.5*(1+log_var - mu**2 -
torch.exp(log_var)).sum(dim=1)).mean(dim=0)
recon_loss_criterion = nn.MSELoss()
recon_loss = recon_loss_criterion(x, x_out)
# print(kl_loss.item(),recon_loss.item())
loss = recon_loss*self.alpha + kl_loss
self.log('val_kl_loss', kl_loss, on_step=False, on_epoch=True)
self.log('val_recon_loss', recon_loss, on_step=False, on_epoch=True)
self.log('val_loss', loss, on_step=False, on_epoch=True)
# print(x.mean(),x_out.mean())
return x_out, loss
def validation_epoch_end(self, outputs):
if not self.save_images:
return
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
choice = random.choice(outputs)
output_sample = choice[0]
output_sample = output_sample.reshape(-1, 1, self.width, self.height)
# output_sample = self.scale_image(output_sample)
save_image(
output_sample,
f"{self.save_path}/epoch_{self.current_epoch+1}.png",
# value_range=(-1, 1)
)
def configure_optimizers(self):
optimizer = Adam(self.parameters(), lr=(self.lr or self.learning_rate))
lr_scheduler = ReduceLROnPlateau(optimizer,)
return {
"optimizer": optimizer, "lr_scheduler": lr_scheduler,
"monitor": "val_loss"
}
def forward(self, x):
mu, log_var = self.encode(x)
hidden = self.reparametrize(mu, log_var)
output = self.decode(hidden)
return mu, log_var, output
# Functions for dataloading
def train_dataloader(self):
if self.dataset == "mnist":
train_set = MNIST('data/', download=True,
train=True, transform=self.data_transform)
elif self.dataset == "fashion-mnist":
train_set = FashionMNIST(
'data/', download=True, train=True,
transform=self.data_transform)
elif self.dataset == "celeba":
train_set = CelebA('data/', download=False, split="train", transform=self.data_transform)
return DataLoader(train_set, batch_size=self.batch_size, shuffle=True)
def val_dataloader(self):
if self.dataset == "mnist":
val_set = MNIST('data/', download=True, train=False,
transform=self.data_transform)
elif self.dataset == "fashion-mnist":
val_set = FashionMNIST(
'data/', download=True, train=False,
transform=self.data_transform)
elif self.dataset == "celeba":
val_set = CelebA('data/', download=False, split="valid", transform=self.data_transform)
return DataLoader(val_set, batch_size=self.batch_size)
def test_dataloader(self):
if self.dataset == "mnist":
val_set = MNIST('data/', download=True, train=False,
transform=self.data_transform)
elif self.dataset == "fashion-mnist":
val_set = FashionMNIST(
'data/', download=True, train=False,
transform=self.data_transform)
elif self.dataset == "celeba":
val_set = CelebA('data/', download=False, split="test", transform=self.data_transform)
return DataLoader(val_set, batch_size=self.batch_size)