File size: 12,807 Bytes
68a9b68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
from __future__ import annotations

import contextlib
import json
import logging
from typing import Any, Dict, Generator, Iterable, List, Optional, Tuple, Type

import pandas as pd
import sqlalchemy
from langchain.docstore.document import Document
from langchain.schema.embeddings import Embeddings
from langchain.vectorstores.base import VectorStore
from models.article import Article
from models.distance import DistanceStrategy, distance_strategy_limit
from sqlalchemy import delete, text
from sqlalchemy.orm import Session
from utils import str_to_list

DEFAULT_DISTANCE_STRATEGY = DistanceStrategy.COSINE

_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"


def _results_to_docs(docs_and_scores: Any) -> List[Document]:
    """Return docs from docs and scores."""
    return [doc for doc, _ in docs_and_scores]


class CustomVectorStore(VectorStore):
    """`Postgres`/`PGVector` vector store.

    To use, you should have the ``pgvector`` python package installed.

    Args:
        connection: Postgres connection string.
        embedding_function: Any embedding function implementing
            `langchain.embeddings.base.Embeddings` interface.
        table_name: The name of the collection to use. (default: langchain)
            NOTE: This is not the name of the table, but the name of the collection.
            The tables will be created when initializing the store (if not exists)
            So, make sure the user has the right permissions to create tables.
        distance_strategy: The distance strategy to use. (default: COSINE)
        pre_delete_collection: If True, will delete the collection if it exists.
            (default: False). Useful for testing.

    Example:
        .. code-block:: python

            from langchain.vectorstores import PGVector
            from langchain.embeddings.openai import OpenAIEmbeddings

            COLLECTION_NAME = "state_of_the_union_test"
            embeddings = OpenAIEmbeddings()
            vectorestore = PGVector.from_documents(
                embedding=embeddings,
                documents=docs,
                table_name=COLLECTION_NAME,
                connection=connection,
            )


    """

    def __init__(
        self,
        connection: sqlalchemy.engine.Connection,
        embedding_function: Embeddings,
        table_name: str,
        column_name: str,
        collection_metadata: Optional[dict] = None,
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        pre_delete_collection: bool = False,
        logger: Optional[logging.Logger] = None,
    ) -> None:
        self._conn = connection
        self.embedding_function = embedding_function
        self.table_name = table_name
        self.column_name = column_name
        self.collection_metadata = collection_metadata
        self._distance_strategy = distance_strategy
        self.pre_delete_collection = pre_delete_collection
        self.logger = logger or logging.getLogger(__name__)
        self.__post_init__()

    def __post_init__(
        self,
    ) -> None:
        """
        Initialize the store.
        """
        # self._conn = self.connect()

        self.EmbeddingStore = Article

    @property
    def embeddings(self) -> Embeddings:
        return self.embedding_function

    @contextlib.contextmanager
    def _make_session(self) -> Generator[Session, None, None]:
        """Create a context manager for the session, bind to _conn string."""
        yield Session(self._conn)

    def add_embeddings(
        self,
        texts: Iterable[str],
        embeddings: List[List[float]],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Add embeddings to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            embeddings: List of list of embedding vectors.
            metadatas: List of metadatas associated with the texts.
            kwargs: vectorstore specific parameters
        """
        if not metadatas:
            metadatas = [{} for _ in texts]

        with Session(self._conn) as session:
            for txt, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
                embedding_store = self.EmbeddingStore(
                    embedding=embedding,
                    document=txt,
                    cmetadata=metadata,
                    custom_id=id,
                )
                session.add(embedding_store)
            session.commit()

        return ids

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            kwargs: vectorstore specific parameters

        Returns:
            List of ids from adding the texts into the vectorstore.
        """
        embeddings = self.embedding_function.embed_documents(list(texts))
        return self.add_embeddings(
            texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
        )

    def similarity_search(
        self,
        query: str,
        k: int = 4,
        filter: Optional[dict] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Run similarity search with PGVector with distance.

        Args:
            query (str): Query text to search for.
            k (int): Number of results to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query.
        """
        embedding = self.embedding_function.embed_query(text=query)
        return self.similarity_search_by_vector(
            embedding=embedding,
            k=k,
        )

    def similarity_search_with_score(
        self,
        query: str,
        k: int = 4,
        filter: Optional[dict] = None,
    ) -> List[Tuple[Document, float]]:
        """Return docs most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query and score for each.
        """
        embedding = self.embedding_function.embed_query(query)
        docs = self.similarity_search_with_score_by_vector(embedding=embedding, k=k)
        return docs

    @property
    def distance_strategy(self) -> str | None:
        if self._distance_strategy == DistanceStrategy.EUCLIDEAN:
            return "<->"
        elif self._distance_strategy == DistanceStrategy.COSINE:
            return "<=>"
        elif self._distance_strategy == DistanceStrategy.MAX_INNER_PRODUCT:
            return "<#>"
        else:
            raise ValueError(
                f"Got unexpected value for distance: {self._distance_strategy}. "
                f"Should be one of {', '.join([ds.value for ds in DistanceStrategy])}."
            )

    def similarity_search_with_score_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
    ) -> List[Tuple[Document, float]]:
        results = self.__query_collection(embedding=embedding, k=k)

        return self._results_to_docs_and_scores(results)

    @staticmethod
    def _fetch_title(title: str, abstract: str):
        if len(title) > 0:
            return title
        return abstract.split(".")[0]

    def _results_to_docs_and_scores(self, results: Any) -> List[Tuple[Document, float]]:
        """Return docs and scores from results."""
        docs = [
            (
                Document(
                    page_content=json.dumps(
                        {
                            "title": self._fetch_title(
                                result["title"][0], result["abstract"][0]
                            ),
                            "authors": result["authors"],
                            "keywords": result["keywords"],
                        }
                    ),
                    metadata={
                        "id": result["id"],
                        "doi": result["doi"],
                        "hal_id": result["hal_id"],
                        "distance": result["distance"],
                        "abstract": result["abstract"][0],
                    },
                ),
                result["distance"] if self.embedding_function is not None else None,
            )
            for result in results
        ]
        return docs

    def __query_collection(
        self,
        embedding: List[float],
        k: int = 4,
    ) -> List[Any]:
        """Query the collection."""

        limit = distance_strategy_limit[self._distance_strategy]
        with Session(self._conn) as session:
            results = session.execute(
                text(
                    f"""
                    select
                        a.id,
                        a.title_en,
                        a.doi,
                        a.hal_id,
                        a.abstract_en,
                        string_agg(distinct keyword."name", ', ') as keywords,
                        string_agg(distinct author."name", ', ') as authors,
                        abstract_embedding_en {self.distance_strategy} '{str(embedding)}' as distance
                    from article a
                    left join article_keyword ON article_keyword.article_id = a.id
                    left join keyword on article_keyword.keyword_id = keyword.id
                    left join article_author ON article_author.article_id = a.id
                    left join author on author.id = article_author.author_id
                    where
                        abstract_en != '' and
                        abstract_en != 'None' and
                        abstract_embedding_en {self.distance_strategy} '{str(embedding)}' < {limit}
                    GROUP BY a.id
                    ORDER BY distance
                    LIMIT 100;
                """
                )
            )
            results = results.fetchall()
            results = pd.DataFrame(
                results,
                columns=[
                    "id",
                    "title",
                    "doi",
                    "hal_id",
                    "abstract",
                    "keywords",
                    "authors",
                    "distance",
                ],
            )
            results["abstract"] = results["abstract"].apply(str_to_list)
            results["title"] = results["title"].apply(str_to_list)
        results = results.to_dict(orient="records")
        return results

    def similarity_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs most similar to embedding vector.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query vector.
        """
        docs_and_scores = self.similarity_search_with_score_by_vector(
            embedding=embedding, k=k
        )
        return _results_to_docs(docs_and_scores)

    @classmethod
    def from_texts(
        cls: Type[CustomVectorStore],
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        table_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
        distance_strategy: DistanceStrategy = DEFAULT_DISTANCE_STRATEGY,
        ids: Optional[List[str]] = None,
        pre_delete_collection: bool = False,
        **kwargs: Any,
    ) -> CustomVectorStore:
        """
        Return VectorStore initialized from texts and embeddings.
        Postgres connection string is required
        "Either pass it as a parameter
        or set the PGVECTOR_CONNECTION_STRING environment variable.
        """
        embeddings = embedding.embed_documents(list(texts))

        return cls.__from(
            texts,
            embeddings,
            embedding,
            metadatas=metadatas,
            ids=ids,
            table_name=table_name,
            distance_strategy=distance_strategy,
            pre_delete_collection=pre_delete_collection,
            **kwargs,
        )