Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.utilities import SQLDatabase
|
2 |
+
from langchain_core.callbacks import BaseCallbackHandler
|
3 |
+
from typing import TYPE_CHECKING, Any, Optional, TypeVar, Union
|
4 |
+
from uuid import UUID
|
5 |
+
from langchain_community.agent_toolkits import create_sql_agent
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
|
9 |
+
from langchain_openai import OpenAIEmbeddings
|
10 |
+
from langchain.agents.agent_toolkits import create_retriever_tool
|
11 |
+
from langchain_core.output_parsers import JsonOutputParser
|
12 |
+
import os
|
13 |
+
from langchain_core.prompts import (
|
14 |
+
ChatPromptTemplate,
|
15 |
+
FewShotPromptTemplate,
|
16 |
+
MessagesPlaceholder,
|
17 |
+
PromptTemplate,
|
18 |
+
SystemMessagePromptTemplate,
|
19 |
+
)
|
20 |
+
import ast
|
21 |
+
import re
|
22 |
+
from utils import query_as_list, get_answer
|
23 |
+
import gradio as gr
|
24 |
+
|
25 |
+
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0, api_key=os.environ['API_KEY'])
|
26 |
+
example_selector = SemanticSimilarityExampleSelector.from_examples(
|
27 |
+
examples,
|
28 |
+
OpenAIEmbeddings(model="text-embedding-3-small", api_key=os.environ['API_KEY']),
|
29 |
+
Chroma(persist_directory="data"),
|
30 |
+
# Chroma,
|
31 |
+
k=5,
|
32 |
+
input_keys=["input"],
|
33 |
+
)
|
34 |
+
|
35 |
+
db = SQLDatabase.from_uri("sqlite:///attendance_system.db")
|
36 |
+
|
37 |
+
employee = query_as_list(db, "SELECT FullName FROM Employee")
|
38 |
+
|
39 |
+
vector_db = Chroma.from_texts(employee, OpenAIEmbeddings(model="text-embedding-3-small", api_key=os.environ['API_KEY']))
|
40 |
+
retriever = vector_db.as_retriever(search_kwargs={"k": 15})
|
41 |
+
description = """Use to look up values to filter on. Input is an approximate spelling of the proper noun, output is \
|
42 |
+
valid proper nouns. Use the noun most similar to the search."""
|
43 |
+
retriever_tool = create_retriever_tool(
|
44 |
+
retriever,
|
45 |
+
name="search_proper_nouns",
|
46 |
+
description=description,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
demo = gr.Interface(fn=get_answer, inputs="text", outputs="text")
|
52 |
+
demo.launch()
|
53 |
+
|