File size: 4,630 Bytes
6f8d992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import streamlit as st
from sentence_transformers import SentenceTransformer
from redis.commands.search.query import Query
import redis
from langchain.prompts import PromptTemplate
from langchain import HuggingFaceHub
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI
from langchain.callbacks.base import BaseCallbackHandler
import os
from dotenv import load_dotenv
import numpy as np

load_dotenv()
redis_key = os.getenv('REDIS_KEY')
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
repo_id = 'tiiuae/falcon-7b-instruct'

class StreamHandler(BaseCallbackHandler):
    def __init__(self, container, initial_text="", display_method='markdown'):
        self.container = container
        self.text = initial_text
        self.display_method = display_method

    def on_llm_new_token(self, token: str, **kwargs) -> None:
        self.text += token + " "
        display_function = getattr(self.container, self.display_method, None)
        if display_function is not None:
            display_function(self.text)
        else:
            raise ValueError(f"Invalid display_method: {self.display_method}")
        

st.title('My Amazon shopping buddy 🏷️')
st.caption('πŸ€– Powered by Falcon Open Source AI model')

#connect to redis database
@st.cache_resource()
def redis_connect():
  redis_conn = redis.Redis(
    host='redis-12882.c259.us-central1-2.gce.cloud.redislabs.com',
    port=12882,
    password=redis_key)
  return redis_conn

redis_conn = redis_connect()

#the encoding keywords chain
@st.cache_resource()
def encode_keywords_chain():
    falcon_llm_1 = HuggingFaceHub(repo_id = repo_id, model_kwargs={'temperature':0.1,'max_new_tokens':500},huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN)
    prompt = PromptTemplate(
        input_variables=["product_description"],
        template="Create comma seperated product keywords to perform a query on a amazon dataset for this user input: {product_description}",
    )
    chain = LLMChain(llm=falcon_llm_1, prompt=prompt)
    return chain
chain = encode_keywords_chain()
#the present products chain

@st.cache_resource()
def present_products_chain():
    template = """You are a salesman. Be kind, detailed and nice.  take the given context and Present the given queried search result in a nice way as answer to the user_msg. dont ask questions back or freestyle and invent followup conversation! 
    {chat_history}
    user:{user_msg}
    Chatbot:"""
    prompt = PromptTemplate(
        input_variables=["chat_history", "user_msg"],
        template=template
    )
    memory = ConversationBufferMemory(memory_key="chat_history")
    llm_chain = LLMChain(
        llm = ChatOpenAI(openai_api_key=os.getenv('OPENAI_API_KEY'),temperature=0.8,model='gpt-3.5-turbo'),
        prompt=prompt,
        verbose=False,
        memory=memory,
    )
    return llm_chain
 


llm_chain = present_products_chain()

@st.cache_resource()
def embedding_model():
    embedding_model = SentenceTransformer('sentence-transformers/all-distilroberta-v1')
    return embedding_model

embedding_model = embedding_model()

if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "assistant", "content": "Hey im your online shopping buddy, how can i help you today?"}]
for msg in st.session_state["messages"]:
    st.chat_message(msg["role"]).write(msg["content"])

prompt = st.chat_input(key="user_input" )

if prompt:
    st.session_state["messages"].append({"role": "user", "content": prompt})
    st.chat_message('user').write(prompt)
    st.session_state.disabled = True
    keywords = chain.run(prompt)
    #vectorize the query
    query_vector = embedding_model.encode(keywords)
    query_vector = np.array(query_vector).astype(np.float32).tobytes()
    #prepare the query
    ITEM_KEYWORD_EMBEDDING_FIELD = 'item_vector'
    topK=5
    q = Query(f'*=>[KNN {topK} @{ITEM_KEYWORD_EMBEDDING_FIELD} $vec_param AS vector_score]').sort_by('vector_score').paging(0,topK).return_fields('vector_score','item_name','item_id','item_keywords').dialect(2)
    params_dict = {"vec_param": query_vector}
    #Execute the query
    results = redis_conn.ft().search(q, query_params = params_dict)

    full_result_string = ''
    for product in results.docs:
        full_result_string += product.item_name + ' ' + product.item_keywords  + "\n\n\n"

    result = llm_chain.predict(user_msg=f"{full_result_string} ---\n\n {prompt}")
    st.session_state.messages.append({"role": "assistant", "content": result})
    st.chat_message('assistant').write(result)