Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import pandas as pd | |
import numpy | |
import tensorflow as tf | |
import tensorflow_text as tf_text | |
from metaphone import doublemetaphone | |
import re | |
with open('vocab_data.pkl', 'rb') as fp: | |
hin_vocab = pickle.load(fp) | |
vocab_keys=[l for l in hin_vocab] | |
reloaded = tf.saved_model.load("translator") | |
def t_text(line): | |
line=re.sub("[.!?\\-\'\"]", "",line).lower().strip() | |
string='' | |
for j in line.split(' '): | |
if doublemetaphone(j)[0]+'*'+doublemetaphone(j[::-1])[0]+'*'+j[:2]+'*'+j[len(j)-1:] in vocab_keys: | |
string=string+list(hin_vocab[doublemetaphone(j)[0]+'*'+doublemetaphone(j[::-1])[0]+'*'+j[:2]+'*'+j[len(j)-1:]])[0]+' ' | |
else: | |
string=string+j+' ' | |
return string.lower().strip() | |
st.header("Hinglish-English Translator") | |
st.subheader("Please enter your text!") | |
st.text("") | |
input = st.text_area("Enter here") | |
if st.button('Check Now!'): | |
#transformed_sms = transform_text(input) | |
#vector_input = tfidf.transform([transformed_sms]) | |
#result = model.predict(vector_input)[0] | |
#if result == 1: | |
# st.error("Spam") | |
#else: | |
# st.success("Not Spam") | |
st.write(reloaded.tf_translate( | |
tf.constant([ | |
t_text(input) | |
]))['text'][0].numpy().decode()) | |
#st.write(t_text(input)) | |
#st.write("Thank you! I hope you liked it. ") | |
#st.write("Check out this Repo's [GitHub Link](https://github.com/RohanHBTU/spam_classifier)") | |