import gradio as gr import onnxruntime from transformers import AutoTokenizer import torch token = AutoTokenizer.from_pretrained('distilroberta-base') inf_session = onnxruntime.InferenceSession('classifier1-quantized.onnx') input_name = inf_session.get_inputs()[0].name output_name = inf_session.get_outputs()[0].name classes = ['Art', 'Astrology', 'Biology', 'Chemistry', 'Economics', 'History', 'Literature', 'Philosophy', 'Physics', 'Politics', 'Psychology', 'Sociology'] def classify(review): input_ids = token(review)['input_ids'][:512] logits = inf_session.run([output_name],{input_name : [input_ids]})[0] logits = torch.FloatTensor(logits) probs = torch.sigmoid(logits)[0] x = 2 return dict(zip(classes,map(float,probs))) label = gr.outputs.Label(num_top_classes=5) iface = gr.Interface(fn=classify,inputs='text',outputs = label) iface.launch(inline=False)